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We study the Sz-conserving quantum spin Hall insulator in the presence of Hubbard U from a
field theory point view. The main findings are the following. (1) For arbitrarily small U the edges
possess power-law correlated antiferromagnetic XY local moments. Gapless charge excitations arise
from the Goldstone-Wilczek mechanism. (2) The vortex instanton of the XY moments violates
charge conservation of the edge, hence are usually forbidden. (3) For samples with finite width,
electron tunneling between opposite edges allow vortex instantons to proliferate when K, the XY
stiffness constant, satisfies 4πK + (4πK)−1

< 4. So long as the preceding inequality is violated,
the edge modes remain gapless despite the sample width is finite. This is fundamentally different
from the free electron limit. (4) The phase transition from the topological insulator to the large U

antiferromagnetic insulator is triggered by the condensation of magnetic excitons. (5) In the large
U antiferromagnetic insulating phase the magnetic vortices carry charges proportional to the square
magnitude of the antiferromagnetic order parameter.

PACS numbers: 74.20.Mn, 74.72.-h, 74.25.Gz

The subject of topological insulator (TI) has attracted
considerable attention recently[1]. A signature of this
type of band insulator is the presence of itinerant bound-
ary states in the bulk band gap[2–6]. Moreover, unlike
those in usual band insulators, these itinerant in-gap
states are robust against any modification of the free-
electron Hamiltonian so long as they (i) respect time re-
versal symmetry, and (ii) do not close the bulk bandgap.
Because of the robustness, these boundary states can
evade Anderson’s localization in the presence of (time-
reversal invariant) disorder[7]. At the present time non-
interacting TIs are fairly well understood. What re-
mains open is the effect of electron-electron interaction
on TIs[8].

Recently two independent Monte-Carlo simulations[9,
10] were performed on the simplest kind of two dimen-
sional interacting TI. The Hamiltonian studied in these
works is H0 + Hu where H0 is the Sz-conserving free
electron model introduced by Kane and Mele[2]:

H0 =
∑
σ=±1

{−
∑
〈ij〉

c+iσcjσ + i t′
∑
〈〈ij〉〉

σ νijc
+
iσcjσ}. (1)

Here i, j label the sites of a honeycomb lattice, the first
term describes the nearest neighbor hopping, and the sec-
ond term is a spin dependent second neighbor hopping.
Here νij = (d̂1×d̂2)z/|(d̂1×d̂2)z| where d̂1 and d̂2 are unit
vectors along the two bonds the electron traverses when
hopping from j to i. Hu is given by Hu = U

∑
i ni↑n↓.

According to Ref.[9], for t′ & 0.03 (see Fig. (1)) there are
only two phases as a function of U . The large U phase is
an easy-plane (XY) antiferromagnetic (AF) Mott insula-
tor; at small U it is an (interacting) TI with gapless spin
and charge edge excitations.

The present work is motivated by the following consid-
erations. Consider a system with edges (Fig. (2)(a)). At

FIG. 1: (color on-line) A schematic reproduction of the phase
diagram of the H0 +Hu reported in Ref.[9]. The blue cut is
considered in the text.

U = 0 the bulk has a band gap and the only low energy
excitations are the “helical” edge modes described by the
following Hamiltonian

HE0 = ∓iv
∫
dxΨ+σz∂xΨ, (2)

where ∓ applies to the top/bottom edges. In Eq. (2)
v is the edge velocity (which will be set to 1 in the
rest of the paper), and Ψ is a two component fermion
field whose first/second component corresponds to spin
up/down. For small U the bulk is non-magnetic[9, 10]
but the edge will develop local moments. To see that we
Hubbard-Stratonavich decouple the Hubbard U term in
the imaginary-time Euclidean action as

e−U
∫
dτ

∑
j
nj↑nj↓

∼
∫
D[S±]e−U

∫
dτ

∑
j
[S+

j
S−
j
−S+

j
c+
j↓

cj↑−S−
j
c+
j↑

cj↓] (3)
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We note that upon time reversal S±
j → −S∓

j and

c+jσcj−σ → −c+j−σcjσ hence the decoupled action is time-
reversal invariant. (Note that the imaginary time τ trans-
forms as it hence is invariant under time reversal.) In
mean-field theory S± takes on space-time independent
values (hence spontaneously break the time reversal sym-
metry) which introduce two mass terms into H0:

HE0 − Um [cos θ0

∫
dxΨ†σxΨ+ sin θ0

∫
dxΨ†σyΨ]. (4)

Because the non-interacting theory has a logarithmically
diverging susceptibility with respect to these mass terms
mean-field theory predicts the edges will have long range
AF XY order for arbitrarily small positive U Of course,
such long range order is destroyed by spin wave fluctu-
ations and the time reversal symmetry is restored. The
resulting edges have power-law decaying AF XY corre-

lation. However since the local moments introduces a
single particle gap, one might wonder where are the gap-
less charge excitations.

First, to make sure our statement concerning AF mo-
ment formation at infinitesimal U is correct for the edges
of a two dimensional TI, we perform a mean-field cal-
culation on a cylinder for t′ = 0.2 and 0 ≤ U ≤ 5 (this
corresponds to the cut associated with the blue line inter-
val in Fig. (1)). The results are shown in Fig. (3); from
which it is clear that while the order parameter deep in
the bulk (the blue curve) vanishes for U . 2.4, the edge
order parameter (the red curve) survives to the lowest
U value. There are two types of fluctuations above the
mean-field vacuum: the massive modulus fluctuation in
m and the massless Goldstone mode (i.e., spin wave) fluc-
tuations. In the presence of these fluctuations we need to
replace Eq. (4) by the following action SE =

∫
dxdτLE :

LE = Ψ̄∂τΨ∓ iΨ+σz∂xΨ− Um̄[cos θ(x, τ) Ψ†σxΨ+ sin θ(x, τ) Ψ†σyΨ] + U [δm(x, τ)2 − δm(x, τ)Ψ†σxΨ]. (5)

(a) (b)z

FIG. 2: (color on-line)(a) The spin-Hall insulator defined on
a cylinder with height h. The blue/red bonds denote the
nearest/second neighbor hopping. (b) When the cylinder is
short, the electron can directly tunnel from one edge to the
other.

In the following we first ignore the δm fluctuation and fo-
cus on the effect of the spin waves. In Ref.[11] Goldstone
and Wilczek showed that integrating out the gapped
fermions in Eq. (5) in the presence of a background elec-
tromagnetic gauge field and the total effective action
looks like

Seff =

∫
dxdτ {K

2
(∂µθ)

2 − ie

2π
(A0∂xθ −Ax∂τθ)}. (6)

Here e is the electron charge, and the last two terms are

the famous chiral anomaly. Using the method of Abanov
and Wiegmann[12] we have derived the stiffness term

K = (m2/2π)
∫ Λ

0
pdp

(p2+m2)2 = (1 − m2

Λ2+m2 )/4π, (here Λ

is a momentum cutoff). Hence as Λ/m→ ∞ K → 1/4π.
So far in deriving K we have ignored the δm fluctua-

tion. The easiest way to account for these fluctuations
is to replace the fermion bi-linears in Eq. (5) by their
bosonization formulae[13]:

LE =
1

2
(∂µφ)

2 − Um̄CΛ cos[θ(x, τ) −
√
4πφ(x, τ)]

+U [δm(x, τ)2 − δm(x, τ)CΛ cos(
√
4πφ)], (7)

where CΛ is a cutoff dependent constant. Now it is
straightforward to integrate out δm and φ. The results
are (i) the generation of the term ∼

∫
dxdτ cos 2θ which

is irrelevant for (πK)−1 < 2 (ii) an order U correction to
K : K → K +O(U). Hence for large Λ and small U the
effect of δm fluctuations is to make Eq. (6) the action of
a repulsive Luttinger liquid[14].
In the absence of Aµ, Eq. (6) implies the XY correla-

tion function

〈eiθ(0,0)e−iθ(x,τ)〉 ∼ (x2 + τ2)−1/4πK , (8)

hence, as claimed earlier, the long-range order in mean-
field theory is destroyed. The last two terms of Eq. (6)
imply the space and time gradients in θ produce excess
charge and current densities at the edges:

ρE =
e

2π
∂xθ, JE = − e

2π
∂tθ. (9)
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FIG. 3: (color on-line) (a) The mean-field antiferromagnetic
XY order parameter as a function of z (see Fig. (2)(a) and
U . The calculation is done for a cylinder with 35 unit cell
in the periodic direction and 40 unit cells in the z direction.
The value t

′ is 0.2. (b) The order parameter as a function
of U deep in the bulk z = 20 (blue), and at the edge z = 1
or 40 (red). It is clear that while the order parameter in the
bulk vanishes for U . 3 (the small rounding is due to finite
size effect), the edge order parameter survives to the lowest
U value.

Because of Eq. (9) gapless spin wave excitations induce
charge and current density fluctuations with the following
power-law correlation functions

Πρ/J (x, t) ∝ 〈∂x/tθ(0, 0)∂x/tθ(x, t)〉 ∼ ± t2 − x2

(x2 + t2)2
.

Thus through the Goldstone-Wilczek mechanism gapless
charge excitations emerge!

The next question concerns the space-time vortices
(instantons) of the θ field. Because of Eq. (9) a
vorticity-m instanton at the space-time location (x0, t0)
will cause

∮
∂D

dxµ∂µθ = −(2π/)
∮
∂D

dxµǫ
µνJE,ν =

−(2π/e)
∫
D
d2x∂µJE,µ = 2πm. Here D is an arbitrary

disk containing (x0, t0) and JE,µ = (ρE , JE) is the edge
2-current. This implies

∂tρE + ∂xJE = −me δ(x− x0)δ(t− t0), (10)

hence vortex instantons violate the edge charge con-
servation, hence under usual circumstances should be
forbidden. Nonetheless such instantons can occur
through the tunneling of electrons from one edge to the
other[15](Fig. (2)(b)). Annihilate an right(left) moving

FIG. 4: (color on-line) An example of the XY order parameter
profile associated with a localized magnetic exciton . The size
of the red circles is proportional to the magnitude of the order
parameter.

electron at the edge removes a charge e and spin 1/2(-
1/2). Hence

ψR/L(x) ∼ Exp{∓iθ(x)/2 + i2π

∫ ∞

x

dyΠ(y)}, (11)

where [θ(x),Π(y)] = iδ(x−y). The above result resemble
the usual 1D bosonization formula. This is not surpris-
ing since if we identify θ with 2

√
πφ Eq. (9) becomes

the bosonization expression for the charge and current
densities. It can be shown straightforwardly that for
4πK+(4πK)−1 < 4 the inter-edge electron tunneling is a
relevant perturbation. Under such condition, inter-edge
electron tunneling will gap our the edge modes. However,
if 4πK+(4πK)−1 > 4 the inter-edge electron tunneling is
irrelevant. In that case the quantum spin Hall effect will
survive even when h, the sample width, is finite! Such
stabilization of the TI state for finite width sample is a
pure interaction effect.
In the interacting TI phase the system exhibits quan-

tized spin-Hall conductance. This can be understood as
follows. In the presence of an electric field between the
two edges, a voltage difference V develops. This induces
a difference in ∂xθ between the two edges (E1 and E2)
(∂xθ)E1

− (∂xθ)E2
= eV

2πK . Because the spin current is
K∂xθ, this gives J

tot
Sz

= e
2πV hence the spin Hall conduc-

tance is e
2π which is the same as the free electron value.

As to the two terminal conductance, it was pointed out
in the context of quantum wires that in the presence of
translation invariance interaction effect does not change
the two terminal conductance of a Luttinger liquid[16].
Finally we consider the bulk transition between the AF

Mott insulator and the TI. For this discussion let’s use
the periodic boundary condition, and consider the blue
cut in Fig. (1). First we approach the Mott insulator
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from the TI side. In the presence of U its lowest-energy
exciton is magnetic (we don’t use the word “triplet” be-
cause SU(2) is broken by the spin-orbit hopping down
to U(1)). An example of the XY order parameter profile
associated with a magnetic exciton is shown in Fig. (4).
Upon increasing U the transition into the AF insulator is
triggered by the condensation of magnetic excitons. At
the transition the modulus and the phase coherence of
the AF XY order parameter develop simultaneously.
It is also instructive to approach the transition from

the AF Mott insulator side. In this case one nat-
urally expects the XY order to be destroyed by the
condensation of vortices[17]. Because the AF XY or-
der parameter, the triplet superconducting order pa-
rameter and the quantum spin Hall order parameter
(which introduces the spin-dependent hopping term in
Eq. (1)) form a Wess-Zumino-Witten five-tuplet for the
free-graphene bandstructure[18], one expects the follow-
ing charge density-skyrmion density relation[12]

ρ =
1

2π
ǫabcn

a∂xn
b∂yn

c. (12)

Here n1,2,3 are the components of the unit vector, with
n1 associated with the quantum spin Hall order pa-
rameter (the strength of the imaginary second neighbor
hopping in Eq. (1), which is fixed) and n2,3 associated
with the AF XY order parameters. The vortex charge is
therefore proportional to n1(1−n2

1). Since the XY order
parameter vanishes at the Mott → TI transition, the
condensed vortices are charge neutral. Were it not true
the vortex condensed phase can not be an insulator. In
addition, since the modulus of the XY order parameter
vanishes at the transition the vortices do not see a
background magnetic flux which frustrates the vortex
condensation. This implies the universality class of the
transition is three-dimensional XY like as claimed in
Ref.[9].

In summary, despite the apparent differences, the
power-law correlated antiferromagnetic XY edges do ex-
hibit properties expected for the quantum spin Hall in-
sulators. The essential physics is the Goldstone-Wilczek
mechanism; through which the space-time gradients of
the phase angle of the XY order parameter are propor-
tional to the charge and current densities. The space-
time vortices of the XY order parameter violate edge
charge conservation hence are prohibited in thermody-
namic samples. This is the mechanism through which
the gapless charge and spin excitation are protected at
the edges. At the moment we do not have a good picture
for the “spin liquid dome” in Fig. (1). The main findings
of this paper are summarized in the abstract.
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