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The experimental valence band photoemission spectrum of semiconductors exhibits multiple satel-
lites that cannot be described by the GW approximation for the self-energy in the framework of
many-body perturbation theory. Taking silicon as a prototypical example, we compare experimental
high energy photoemission spectra with GW calculations and analyze the origin of the GW failure.
We then propose an approximation to the functional differential equation that determines the exact
one-body Green’s function, whose solution has an exponential form. This yields a calculated spec-
trum, including cross sections, secondary electrons, and an estimate for extrinsic and interference
effects, in excellent agreement with experiment. Our result can be recast as a dynamical vertex
correction beyond GW, giving hints for further developments.

Photoemission is a prominent tool to access informa-
tion about electronic structure and excitations in mate-
rials. Modern synchrotron sources can provide detailed
insight, thanks to their high intensity and broad pho-
ton energy range. But the interpretation of the experi-
mental data is far from obvious, and theory is an essen-
tial complementary tool. However, ab initio calculations
typically focus on bulk bandstructure [1, 2]; thus sur-
face effects are ignored, and satellites are not included.
The latter are a pure many-body effect due to coupling
to excitations of the material. Such many-body effects
are contained in approaches developed for correlated ma-
terials [3, 4] however, these are usually based on mod-
els with short-range interactions, whereas satellites such
as plasmons involve long-range effects. Plasmon satel-
lites have been extensively studied in core-level experi-
ments [5]. There they can be described by a theoreti-
cal model where a single dispersionless fermion couples
to bosons. The resulting exact Green’s function has an
exponential form given by the so-called cumulant expan-
sion (CE). A Taylor expansion of the exponential leads
to a well defined quasi-particle (QP) peak followed by
a decaying series of plasmon satellites at energy differ-
ences given by the plasmon energy, consistent with ex-
perimental observations [6–10]. In the valence region,
plasmon satellites are much less studied, though ab ini-

tio approaches can provide a good starting point. At high
photoelectron energies the photoemission spectrum is ap-
proximately proportional to the intrinsic spectral func-
tion A(ω) = −(1/π)ImG(ω), where G is the one-particle
Green’s function. The latter is typically calculated using
the widely used GW approximation (GWA) [7, 11, 12].
In principle, the GWA contains correlations effects be-
yond the quasiparticle approximation. However, these

additional features are rarely calculated due to computa-
tional complexity and, more importantly, the serious dis-
crepancies between GWA and experiment (see e.g. [13–
16]). The CE has also been used for the homogeneous
electron gas [17] and simple metals [14, 15], yielding an
improved description of satellites over GW. Silicon [16]
and graphite [18] were also studied, but no plasmon satel-
lite series were observed. However, these results are not
conclusive due to difficulties of interpreting the experi-
mental data. This leaves a series of important questions:
(i) do materials generally exhibit intrinsic satellites in
the valence band region following a cumulant like distri-
bution, or are the extrinsic plasmon peaks, due to losses
incurred by the escaping photoelectron, dominant? (ii)
if such series are seen, how bad are ab initio GW calcu-
lations, what is the reason for their failure, and (iii) how
can they be improved? Answering these questions would
be a crucial step towards a better understanding of cor-
relation effects in electronic excitations and a predictive
ab initio approach to photoemission.

In this work we focus on plasmon satellites using sili-
con as a prototypical example. We have obtained valence
band photoemission data at high photon energy (XPS)
that constitute a reliable and well resolved benchmark.
Analysis of the data allows us to elucidate the failure
of GW in describing the satellites. Then, starting from
the fundamental equations of many-body perturbation
theory (MBPT), we show how the failure can be over-
come by using a decoupling approximation that leads to
an exponential representation of the one-particle Green’s
function. Together with an estimate for extrinsic and in-
terference effects, we obtain results for the quasiparticle
peaks and satellites in excellent agreement with experi-
ment. Our theoretical results can be expressed in terms
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of a dynamical vertex correction, a powerful basis for fur-
ther modelling.

Angular resolved valence photoemission (ARPES)
measurements were performed at the UHV photoemis-
sion experimental station of the TEMPO beamline [19]
at the SOLEIL synchrotron radiation source. Linearly
polarized photons from the Apple II type Insertion De-
vice (HU44) were selected in energy using a high resolu-
tion plane grating monochromator with a resolving power
E/∆E = 5000. The end-station chamber (base pressure
10−10 mbar) is equipped with a modified SCIENTA-200
electron analyzer with a delay-line 2D detector which op-
timizes the detection linearity and signal/ background
ratio [20]. The overall energy resolution was better than
200 meV. The photon beam impinges on the sample at
an angle of 43◦, and photoelectrons were detected around
the sample surface normal with an angular acceptance of
±6◦. A n-type (ND ≃ 2 × 10−18P atoms/cm3) Si(001)
wafer was cleaned from the native oxide by flash anneal-
ing at 1100◦ C after prolonged degassing at 600◦ C in
ultra-high vacuum. The silicon surface was annealed at
300◦ C to prevent surface etching, and hydrogenated in
a partial pressure of activated hydrogen about 2 × 10−8

mbar for 20 min. The ARPES was measured along the
Σ direction. At 800 eV kinetic energy the Si Brillouin
zone is observed with an emission angle slightly smaller
than 5◦. The measured photoemission map was inte-
grated over the spectral intensity originated by two Bril-
louin zones. The Fermi level was obtained by measuring
a clean Au(111) surface. The experimental data (crosses)
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FIG. 1. (Color online) Experimental XPS spectrum of Si at
800 eV photon energy (blue crosses), compared to the the-
oretical intrinsic A(ω) calculated from G0W0 (red dashed),
and from Eq. (4) (green dot-dashed). On top of the latter
the black solid line also includes extrinsic and interference ef-
fects. All spectra contain photoabsorption cross sections, a
calculated secondary electron background and 0.4 eV Gaus-
sian broadening to account for finite k-point sampling and
experimental resolution. The Fermi energy is set to 0 eV.

are summarized in Fig. 1. One can distinguish the quasi-
particle peaks between the Fermi level at zero and the
bottom valence at -12 eV, followed by two prominent
satellite structures, each at a mutual distance of about
17 eV, as well as a more weakly visible third satellite
between -52 and -60 eV. These structures are obviously
related to the 17 eV silicon bulk plasmon [21].
The exact one-electron Green’s function G is described

by an equation of motion with the form of a functional
differential equation [22],

G = G0 + G0VHG + G0ϕG + iG0vc
δG

δϕ
. (1)

Here G0 is the non-interacting Green’s function, ϕ is a
fictitious external perturbation that is set to zero at the
end of the derivation, vc is the bare Coulomb interaction,
and all quantities are understood to be matrices in space,
spin, and time. The Hartree potential VH gives rise to
screening to all orders. Linearizing VH with respect to ϕ
yields [23]

G(t1t2) = G0
H(t1t2) + G0

H(t1t3)ϕ̄(t3)G(t3t2)

+ iG0
H(t1t3)W(t3t4)

δG(t3t2)

δϕ̄(t4)
, (2)

where ϕ̄ is equal to ϕ screened by the inverse dielec-
tric function, W is the screened Coulomb interaction,
and G0

H is the Green’s function containing the Hartree
potential at vanishing ϕ̄; only time arguments are dis-
played explicitly and repeated indices are integrated.
This linearization preserves the main effects of W and
hence of plasmons. With the additional approximation
δG(t3t2)
δϕ̄(t4)

≃ G(t3t4)G(t4t2) one obtains the Dyson equa-

tion G = G0
H + G0

HΣG in the GWA for the self-energy Σ.
However this approximation can be problematic. For the
following analysis we use the standard G0W0 approach,
where G0 is taken from an LDA calculation and W0 is
the screened interaction in the Random Phase Approx-
imation. Fig. 2 shows the G0W0 spectral function [24]

A(ω) = 1
π

|ImΣ(ω)|/[[ω − εH − ReΣ(ω)]
2
+ [ImΣ(ω)]

2
]

of Si at the Γ point, for top valence (solid line) and
bottom valence (dashed), respectively. The top valence
shows a sharp quasiparticle peak followed by a broad,
weak satellite structure at about -21 eV. This peak stems
from the prominent peak in ImΣ (full circles) at about
−18 eV, itself due to the plasmon peak in ImW . It
is a typical plasmon satellite, though (cf. [7]), the QP-
satellite spacing is slightly overestimated because the
term ω − εH − ReΣ (full squares) in the denominator
of the expression for A(ω) is not constant. However the
GWA has a more severe problem: for the bottom valence,
the satellite structure at about −36 eV is much too far
from the QP peak at about −12 eV, and much too sharp.
This satellite does not correspond to a plasmon peak in
ImΣ (empty circles), but to a zero in ω − εH − ReΣ
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FIG. 2. (Color online) G0W0 spectral function of bulk silicon
for the top and bottom valence bands at the Γ point (black
solid and blue dashed, respectively). The corresponding imag-
inary parts of the self-energy (red empty-circles-dashed-line
and green full-circles-solid-line) and ω−εH−ReΣ (red empty-
squares-dashed-line and green full-squares-solid-line) are also
shown. The Fermi energy is set to 0 eV.

(empty squares) in the denominator of A(ω), as for a
QP peak. It has been interpreted in the HEG as a plas-

maron, a coupled hole-plasmon mode [25], but as noted
below it is an artifact of the GWA [26, 27]. Fig. 1 com-
pares the total GW spectral function (dashed red line)
summed over all valence bands and k-points, with our
XPS data. The effects of cross-sections are included by
projecting on angular momenta in atomic spheres using
the atomic data of Ref. [28]. The secondary electrons
background at energy ω was determined by integrating
the calculated intrinsic spectral intensity between ω and
the Fermi level, similar to [29]. A constant scaling factor
was set such that the measured photoemission intensity
at the highest binding energy (60 eV), where primary
electrons intensity is absent, is reproduced. As expected,
the dominant QP spectrum is well described by GW , but
the satellite is dominated by the plasmaron around −36
eV, in complete disagreement with experiment. The ex-
perimental plasmon satellite at about −25 eV appears
only as a weak shoulder in the GWA. Thus the plas-
maron peak is responsible for the GWA failure [26, 27]
in silicon.

To go beyond the GW self-energy requires vertex cor-
rections. However, adiabatic vertex corrections (see e.g.
[30]) only lead to renormalization of energies and do not
create new structures. Thus alternatively, we concen-
trate here on dynamical effects, and we choose to ap-
proximate directly Eq. (2), without passing through a
self-energy. We decouple Eq. (2) approximately by sup-
posing that G and GH are diagonal in the same single
particle basis. Eq. (2) is then applicable separately for
every single matrix element of G and each state couples

independently to the neutral excitations of the system
through W [31]. The latter can now be understood as
the screened intra-orbital Coulomb matrix element for
the chosen state. Such a decoupling approximation can
be optimized [26, 27] by adding and subtracting a self-
energy correction, hence by using a QP Green’s func-
tion G∆ obtained from a good QP self-energy instead
of GH . Since the GWA is currently the state-of-the
art for QP properties, we suppose that for every decou-
pled state k, Gk

∆(τ) = iθ(−τ)e−iεkτ is determined from
ΣGW (εk), where εk = ε0k + ΣGW (εk) is the (complex)
GW quasiparticle energy and τ = t1 − t2. Now Eq. (2)
can be solved exactly for each state. Briefly the main
steps are: (i) solve the non-interacting (W = 0) ver-
sion of (2), which leads to an explicit solution Gϕ

∆; (ii)
iterate the result G = Gϕ

∆ − Gϕ
∆∆G + iGϕ

∆W
δG
δϕ̄

start-

ing from G(0) = Gϕ
∆. Here ∆ compensates for the self-

energy insertion used for the optimized decoupling; (iii)

use the exact relation
δG

ϕ
∆
(t3t2)

δϕ̄(t4)
= Gϕ

∆(t3t4)G
ϕ
∆(t4t2) =

iGϕ
∆(t3t2)θ(t2 − t4)θ(t4 − t1) to derive

G(t1t2) = G∆(τ)e
i∆τei

∫ t2
t1

dt′[ϕ̄(t′)−
∫ t2
t′

dt′′W(t′t′′)]. (3)

The equilibrium solution is obtained setting ϕ̄ = 0.
In silicon, where the peaks in the loss function are well

defined, it is justified to use a single plasmon pole model
W(τ) = −iλk

{

e−iω̃kτθ(τ) + eiω̃kτθ(−τ)
}

with plasmon
energy ω̃k and intrinsic strengths λk for each matrix ele-
ment of W . Besides ϕ̄, the total exponent becomes then
ak

[

eiω̃kτ − 1
]

with ak = λk/ω̃
2
k obtained from the cor-

responding GW results. We find that ak varies around
0.3. Taylor expansion of the exponential leads then to
the spectral function

Ak(ω) =
e−ak

π

∞
∑

n=0

ank
n!

Γk

(ω − ǫk + n ω̃k)2 + Γ2
k

, (4)

where ǫk = Re[εk] and Γk = Im[εk]. Eq. (4) is sim-
ilar to the plasmon pole version of the CE (cf. Ref.
[14]). However here the exponential solution arises from
a straightforward approximation to the fundamental dif-
ferential equation (1): the linearization of the Hartree
potential reveals the boson of the model (i.e., the plas-
mon via peaks in W), and the diagonal approximation of
G gives rise to each isolated fermion. Our results are sum-
marized in Fig. 1. The dot-dashed line gives the result of
this procedure together with the cross sections and the
secondary electron background. The shapes of the QP
peaks change little with respect to GW, but now the full
series of satellites is present. The internal structure of
the satellites which originate from the multiple valence
bands, is also reproduced. This validates the decoupling
approximation in the dense valence band region where,
contrary to the case of an isolated core level, its suc-
cess is a priori far from obvious. However, the intensity
of the observed satellites is significantly underestimated.
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This discrepancy is similar to that found for the CE in
simple metals, where extrinsic losses were suggested as
a likely cause [14]. These might also be reduced by in-
terference effects [32]. To check this possibility we esti-
mated the contributions from both effects to the satellite
strengths ak using Eq. (32) and (36) of Ref. [33]. This
approach uses a plasmon pole model, Inglesfield fluctua-
tion potentials, and an average over hole positions that
takes account of the photoelectron mean free path λ [33].
We observe that the averaged total satellite line shape in
this model is similar to that for the intrinsic part, with
a width γ ≈ 2 eV due to plasmon dispersion. Thus we
can approximate the extrinsic and interference effects by
renormalizing the intrinsic satellite intensity, i.e., by the
replacement āk = ak+aext+ainf in Eq. (4). These quan-
tities are evaluated with ωp = 16.7 eV and λ = 17.5 Å at
800 eV for Si, yielding aext = 0.63 and ainf = −.11. This
also modifies the strength Zk = e−āk of the QP peaks,
but preserves overall normalization. The broadening of
the satellites must also be increased, Γ → Γ + nγ. The
total spectrum thus obtained (black line) is in unprece-
dented agreement with experiment. We stress that this
result contains no fit parameters besides the two scaling
factors (for spectrum and background) due to the arbi-
trary units of the experiment.

The success of our present approach stresses the need
to go beyond the GWA. The exponential representa-
tion of G implicitly corresponds to a vertex correction

Γ̃ = − δG−1

δϕ̄
to the self-energy. Since our derivation yields

G as a function of the screened potential ϕ̄ (3), this
functional derivative can be performed explicitly, using

− δG−1

δϕ̄
= G−1 δG

δϕ̄
G−1. From Eq. (3), a straightforward

derivative of G contains a series of satellite contributions.
The two inverse Green’s functions lead to a significant
complication, because they contain the inverse of this se-
ries. This clearly illustrates the difficulty of modelling
Γ̃ in order to treat dynamical effects. It suggests rather
to concentrate on modelling δG

δϕ̄
, where the various con-

tributions are simply summed, and hence to search for
a self-energy of the form Σ = −iW δG

δϕ̄
G−1 instead of

Σ = iGWΓ̃. In conclusion, on the basis of our exper-
imental XPS data we have analyzed the failure of GW
to reproduce plasmon satellites and linked this failure
to the appearance of a artificial plasmaron peak. On
the other hand, GW results are fair when the imaginary
part of Σ, hence the intensity of the corresponding plas-
mon, is small enough so that no sharp plasmaron is cre-
ated. Thus surprisingly, one might expect GW to work
better in describing satellites stemming from local plas-
mon or interband excitations close to the Fermi level in
“strongly correlated” materials than for the strong plas-
mon structures in conventional semiconductors. Starting
from the fundamental equations of MBPT we have de-
rived an exponential solution to the one-particle Green’s
function, analogous to that from the CE, that overcomes

the drawbacks of the GWA. Comparison to new photoe-
mission data shows that this yields a very good descrip-
tion of the spectral function of bulk silicon, including the
satellites series. By calculating the secondary electron
background, cross section corrections as well as a cor-
rection for extrinsic and interference effects, we achieve
an agreement between theory and experiment that can
be considered as a benchmark. Our derivation also sug-
gests how the results can be improved in cases where the
presently used approximations are inadequate. Finally,
by accessing an expression for the vertex function, our
approach yields precious hints for directions to take in
modeling dynamical effects beyond the GWA.
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