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The first direct determination of the inertial range energy cascade rate, using an anisotropic
form of Yaglom’s law for magnetohydrodynamic turbulence, is obtained in the solar wind with
multi-spacecraft measurements. The two-point mixed third-order structure functions of Elsässer
fluctuations are integrated over a sphere in magnetic field-aligned coordinates, and the result is
consistent with a linear scaling. Therefore, volume integrated heating and cascade rates are obtained
that, unlike previous studies, make only limited assumptions about the underlying spectral geometry
of solar wind turbulence. These results confirm the turbulent nature of magnetic and velocity field
fluctuations in the low frequency limit, and could supply the energy necessary to account for the
non-adiabatic heating of the solar wind.

PACS numbers:

Turbulence is a universal nonlinear fluid phenomenon
which acts to transfer dynamical energy between scales.
The solar wind provides a natural laboratory for the in
situ study of plasma turbulence, where the framework
of magnetohydrodynamics (MHD) has been successful
in describing magnetic and velocity field fluctuations at
scales above the ion inertial length [see e.g. 1, and refer-
ences therein]. Here the large-scale magnetic field orders
the fluctuations [2], breaking the directional symmetry
familiar in hydrodynamics. It induces anisotropy, e.g.,
in the wave vector distribution of energy, a feature of
plasma turbulence seen in theoretical models [3], numeri-
cal simulations [4], and solar wind observations [5]. These
studies suggest anisotropy is important even for moder-
ate strength mean magnetic fields, thus influencing any
plasma property that depends on the three-dimensional
structure of the turbulence.
The Kolmogorov-Yaglom law for the third-order longi-

tudinal structure functions [6, 7] is fundamental in char-
acterizing the energy cascade in incompressible hydrody-
namics [8]. Extension of this law to time-stationary in-
compressible homogeneous MHD turbulence [9, 10] im-
plies two symmetric scaling laws expressed in terms of
Elsässer variables z± = v ± b, namely
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where the magnetic field fluctuations are in velocity
units, δz± = z

±(x + δx) − z
±(x) are the increments

of the Elsässer fields, and ǫ± are the respective energy
dissipation rates. An ensemble average is denoted by
〈. . .〉. This differential form of the third-order law makes
no assumptions about the underlying spectral geometry
of MHD turbulence. The existence of the third-order
law can be considered more fundamental than the phe-
nomenologies usually associated with the second order

moment. This is partly because second-order statisti-
cal phenomenologies are derived using techniques such
as dimensional analysis. In contrast, the third-order law
is a precise conclusion deriving from the MHD equations
that only assumes some basic symmetries in time and
space. Interpretation in terms of energy cascades and
heating rates is neither determined by, nor discriminates
between, the plethora of spectral laws obtained from phe-
nomenological models. Indeed, understanding the mixed
third-order moment, and higher order statistics in gen-
eral, could lead to a more unified, if not unique, descrip-
tion of MHD turbulence.
Energy cascade rates in solar wind turbulence have

been obtained from single spacecraft estimates of the
third-order law. These studies almost invariably assume
an isotropic geometry [11–13]:
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There have also been studies which included simple mod-
els of anisotropy [14, 15], and while such prescriptions
are useful paradigms, they are nonetheless restrictive and
do not represent the full spectral anisotropy of the solar
wind plasma. Comparison between these studies is com-
plicated by the use of data sets which differ in size, helio-
latitude, and heliocentric distance. Hence, it is not clear
how the neglect of anisotropy affected these results or
contributed to the possible inconsistencies between stud-
ies [16–19]. In advance of a full and detailed analysis
based on Eq. (1), it is also unclear how to assess the
accuracy of various theoretical formulations of the ax-
isymmetric third-order relation [e.g. 20–23].
Here we adopt a multi-spacecraft technique [24, 25] to

estimate the third-order law, based only upon Eq. (1)
and allowing for arbitrary axisymmetric rotations about
the mean magnetic field direction. A pair of spacecraft,
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separated by a distance d12, in a fast moving plasma will
measure Elsässer field time series z±1 (t) and z

±
2 (t) along

the flow direction. If the sampling time of solar wind fluc-
tuations is much less than the characteristic time scale
on which they vary, each separate spacecraft time series
satisfies Taylor’s hypothesis [26] and can be considered
a spatial “snapshot” of the plasma. For multiple space-
craft, this condition is satisfied when [27]

vsw∆t

|d12 − vsw∆t|
·
vA

vsw
≪ 1, (3)

where vsw is the solar wind flow speed, vA is the Alfvén
speed, and |. . .| denotes a vector magnitude. This is
the condition for the single spacecraft case (vsw ≫ vA)
multiplied by the ratio of the scale on which variations
are measured in the plasma frame to the spatial sep-
aration between the spacecraft. In configurations where
the spacecraft separation is smaller than the typical sam-
pling scale, Taylor’s hypothesis is less well satisfied than
the single spacecraft case. In practice, this condition is
well satisfied in the solar wind for most time lags, ∆t.
Any time lags that result in the left side of Eq. (3) be-
ing greater that 0.3 are considered not to satisfy Taylor’s
hypothesis and are removed. Hence, the spacecraft time
series are equivalent to spatial series in the plasma frame:
z±1 (−vswt) and z±2 (d12−vswt). Varying the time lag cor-
responds to changing the vector separation between each
pair of sampling points in the plasma frame:

r(∆t) = d12 − vsw∆t. (4)

Hence, in contrast to single spacecraft studies, a range of
scales and angular dependences of the mixed third-order
moment can be sampled using only a single data interval.
We use 4 s resolution spin averaged magnetic and ve-

locity field data from the FGM [28] and CIS HIA instru-
ments [29] on board the Cluster 1 and 3 spacecraft. The
intervals of data used are at least an hour in duration and
were taken from the period 2006 January–March when
the Cluster spacecraft were in the solar wind at separa-
tions around 10,000 km, which is in the inertial range.
A magnetic field aligned right handed orthogonal coor-

dinate system is used to identify anisotropies. The z-axis
is aligned with the mean magnetic field direction, the x-
direction is in the plane defined by the mean magnetic
field and solar wind velocity (nearly radial) vectors, and
the y-axis completes the right handed system. In addi-
tion, a field angle θSB is defined as the acute angle be-
tween the time-lagged spacecraft separation vector and
the field direction. Good coverage in θSB is needed to
accurately evaluate Eq. (1) integrated over a sphere[22],
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where F± = (r̂ · δz∓) |δz±|
2
is the flux density, and the

Elsässer variables have been sector rectified [30] such that

z
+ is sunward and z

− is anti-sunward. We assume ax-
isymmetry about the mean magnetic field which allows
all the unique information to be captured within a single
quadrant. Note that prior applications of the third-order
law to the solar wind have, in effect, frequently assumed
that the bracketed quantity in the integrand of Eq. (5)
can be brought outside the integral. This can only be
justified for isotropic turbulence.

FIG. 1: All estimates of the anti-sunward normalized flux
density with the corresponding PDF, both highlighting the
almost symmetrical character of the mixed third-order statis-
tic. There is good θSB coverage, but it is non-uniform: sparser
parallel and perpendicular to the mean magnetic field direc-
tion, θSB = 0–10◦ and θSB = 80–90◦. The smoothness of the
PDF, where each bin contains around 100 data points, implies
that the associated statistical quantities are well defined.

The multi-spacecraft technique is used to compute
time-lagged estimates of F± in the range r = 1.1 ±
0.1 × 104 km, which has the greatest θSB coverage.
These spatial lags all lie well within the inertial range
of solar wind turbulence. Flux density values obtained
from each time interval are normalized by σ∓σ

2
±, where

σ2
± =< (z±− < z

± >)2 >, so that these results can be
combined. Figure 1 shows all the estimates of F− that
are used in this analysis, and the corresponding proba-
bility distribution function (PDF). The PDF is smooth,
indicating that the statistical quantities associated with
this study are well defined. Similar results are obtained
for F+. It should be noted that the difficulty in obtaining
a statistically robust estimate of the third-order law is,
in part, due to the almost symmetrical character of the
PDFs of flux density. However, the PDF in Fig. 1 does
indicate a slight skewness towards negative values — this
is required for a physical interpretation of Eq. (5).
Figure 1 shows that there is good coverage in θSB,

but it is not uniform. Therefore, the data is binned and
averaged such that each bin contains at least 10,000 flux
density estimates, and dθSB in Eq. (5) corresponds to
the bin widths. The left hand side of Eq. (5) is obtained
by summing these bins for, separately, the sunward and
anti-sunward third-order laws. This procedure provides
an estimate of each dissipation rate ǫ±, after dividing out
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the separation distance and the constant factor. From
this analysis at 10,000 km separation, where spherical
symmetry was not assumed, the inertial range cascade
rates are ǫ+ = 5.2 × 103 Jkg−1s−1 and ǫ− = 5.7 × 103

Jkg−1s−1 — see Table I for error estimates.

TABLE I: Energy cascade rates and their associated errors,
obtained from the full differential form of the third-order law.

ǫ ± σǫ (102 Jkg−1s−1)

|r| (103 km) Outward Inward

4.2 60 ± 3 49 ± 2

11.1 57 ± 2 52 ± 3

The accuracy of these cascade rates can be corrob-
orated with additional independent estimates. To this
end, the analysis is repeated for spacecraft separations
around 4,000 km, during the period 2003 January–
March. This provides a second pair of ǫ± estimates based
on Eq. (5), where the angular coverage is similar to that
shown in Fig. 1. Indeed adequacy of coverage is a con-
dition for selecting the range employed. The resulting
cascade rates are (see Table I) ǫ+ = 4.9× 103 Jkg−1s−1

and ǫ− = 5.8× 103Jkg−1s−1.

FIG. 2: Linear scaling of the (squares) sunward and (circles)
anti-sunward components of the third-order law. The dashed
lines are least squares fits to the data that have the added
restriction of passing through the origin. It is the gradients of
these lines that correspond to the mean volume averaged cas-
cade rates. The total energy transfer rate, which becomes the
dissipation rate at small scales, is the average of the sunward
and anti-sunward components.

Here we recall from Eq. (5) that the integrated flux
density should scale linearly with spatial separation. In-
deed, previous observations within the solar wind have all
measured this scaling [11, 15]. The present study makes
only limited assumptions about the spectral geometry of
MHD turbulence, which should only strengthen the un-
derlying linear scaling. Hence, each pair of third-order

law estimates (Table I) is fitted to a least squares line
that must pass through the origin. Figure 2 shows this
linear scaling of the third-order law. It should be noted
that data limitations mean the possibility of alternatives
to linear scaling cannot be completely excluded. How-
ever, the two estimates of the third-order law (near 4,000
km and 10,000 km) both fall, within errors, on the same
line through the origin. This has not in any way been
guaranteed by the methodology adopted, and is consis-
tent with the presence of linear scaling. The gradients
of the best-fit lines correspond to the sunward and anti-
sunward energy transfer rates in solar wind turbulence,
based on the data at both computed separations. These
values are ǫ+ = 51± 5× 102 Jkg−1s−1, ǫ− = 57± 5× 102

Jkg−1s−1, and the total dissipation rate ǫT = 54±7×102

Jkg−1s−1 which is broadly consistent with previous stud-
ies conducted in the ecliptic plane [14].

TABLE II: Energy cascade rates and their associated errors
for different spectral geometries and heliolatitudes. The first
entry corresponds to the results obtained from the full dif-
ferential form of the third-order law, with the assumption of
axisymmetry. The remaining entries were all obtained using
single spacecraft analysis techniques [13, 14].

ǫ± σǫ (102 Jkg−1s−1)

Geometry Latitude Outward Inward Total

Full 3D Ecliptic 57 ± 5 51 ± 5 54 ± 7

Isotropic Ecliptic 105 ± 2 25 ± 1 65 ± 1

2D + 1D Ecliptic 140 ± 3 18 ± 3 79 ± 2

Isotropic Poles 1.8 ± 0.7 1.6 ± 0.5 1.7 ± 0. 9

We have used the full differential form of the third-
order structure function law for MHD turbulence, with
the assumption of axisymmetry, to estimate the cascade
rates associated with the two Elsässer energies. Table II
lists the values obtained from our multi-spacecraft anal-
ysis and, for comparison, estimates obtained from pre-
vious single spacecraft studies. While the listed results
are broadly consistent, there are significant differences.
In particular, we find the sunward and anti-sunward cas-
cade rates are, within errors, equal to each other. This is
consistent with the view of cross-helicity and energy de-
cay that has emerged from some theoretical treatments
[e.g. 31, 32]. However, these results have not been corrob-
orated by other in-ecliptic studies. This could be because
the simple spectral models previously used are not accu-
rate representations of the complex anisotropies exhib-
ited by the Elsässer fluctuations. Since we do not make
such restrictive assumptions, not only is our approach
more fundamental, it also provides more accurate esti-
mates of the energy transfer rates. Note that inherent in
our methodology is the use of a large number of data in-
tervals. Therefore, it is possible that different underlying
spectral conditions have been averaged in such a way as
to undermine the influences of anisotropy. However, the
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robustness of our results suggests that this is unlikely.
The observed existence of the third-order law scaling

confirms the turbulent nature of the solar wind magnetic
and velocity field fluctuations in the low frequency limit
of magnetohydrodynamics. An active MHD turbulence
cascade can provide the additional heat required to ex-
plain the non-adiabatic temperature profile of the solar
wind [e.g. 33]. We have estimated the total turbulence
cascade rate, which can be considered the volume aver-
aged dissipation rate, and it is instructive to ascertain if
the cascade can account for the solar wind heat budget.
[34] derived an expression for the proton heating at 1 AU:

ǫheat = 3.6× 10−5vswTp (6)

where Tp is the proton temperature in units of Kelvin.
For typical solar wind conditions (vsw = 470kms−1 and
Tp = 1.5 × 105K), the resulting heating rate is around
2.4×103Jkg−1s−1. After allowing for errors, this is equiv-
alent to approximately 40–60% of the dissipation rate
computed from the third-order law. This result is consis-
tent with observations that suggest heating due to tur-
bulence is divided, with 60% going to proton heating and
40% into electron heating [35, 36].
Work has begun on a more detailed and in-depth anal-

ysis of the full differential form of the third-order law.
This will involve examining some of the more subtle fea-
tures proposed in different theoretical formulations of the
law, and will employ both direct observations and nu-
merical simulations. These results will be presented in a
subsequent publication. Finally, parametric or implicit
dependence of the third-order law on other turbulence
properties will, assuming homogeneity and statistical sta-
tionarity, only become important at higher orders in the
hierarchy of structure functions. Therefore, we must look
to study the more difficult relations that contribute to
the highly variable nature of MHD turbulence, and enter
beyond the relatively elegant third-order statistics.
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