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Autler-Townes splitting (ATS) and electromagnetically-induced transparency (EIT) both yield
transparency in an absorption profile, but only EIT yields strong transparency for a weak pump
field due to Fano interference. Empirically discriminating EIT from ATS is important but so far has
been subjective. We introduce an objective method, based on Akaike’s information criterion, to test
ATS vs. EIT from experimental data for three-level atomic systems and determine which pertains.
We apply our method to a recently reported induced-transparency experiment in superconducting
circuit quantum electrodynamics.
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Coherent processes in atoms and molecules yield many
interesting and practical phenomena such as coherent
population trapping [1], lasing without inversion [2], and
electromagnetically induced transparency (EIT) [3]. Pi-
oneering EIT experiments employed alkali metals due to
their simple electronic level structure and long-lived co-
herence, but recently coherent processes are investigated
in other systems such as quantum dots [4], nanoplasmon-
ics [5], superconducting circuits [6], metamaterials [7, 8],
and optomechanics [9]. EIT is also observed for classical
coupled oscillator, e.g. inductively or capacitively coupled
electrical resonator circuits [10, 11]. EIT systems could
enable new practical applications of coherent processes,
but the lack of time-scale separations characteristic of
alkalis [12] obfuscates signatures of coherent processes.

Here we focus on EIT, where transparency is induced
coherently by a pump field even if the pump is arbitrar-
ily weak. EIT is crucial for optically-controlled slowing of
light [13] and optical storage [14] and is achieved by Fano
interference [15] between two atomic transitions. With-
out Fano interference, the transparency is simply due to a
doublet structure in the absorption profile caused by elec-
tromagnetic (EM) pumping and known as Autler-Townes
splitting (ATS) [16]. Here we introduce an objective test
for use on empirical data to discern EIT from ATS in any
experiment involving a three-level atom (TLA). This test
is based on Akaike weights for the models [17] and reveals
whether EIT or ATS has been observed or whether the
operating conditions make the data inconclusive.

Fano’s seminal study of two nearly-resonant modes de-
caying via a common channel differed from the prevalent
normal-mode analyses at the time: he showed that this
shared decay channel yields additional cross-coupling be-
tween modes mediated by the common reservoir, which
explained the anomalous asymmetric lineshape for elec-
trons scattering from Helium [15]. In fact any response
that combines multiple modes can have Fano interfer-
ence, which can be extremely sharp and highly sensitive
to variability in the system [18].

Harris and Imamoğlu showed that hybrid
“atom+field” modes in the dressed-state formalism
interact with the same reservoir hence readily satisfy
the Fano interference conditions [19] thereby producing
a transparency window in the absorption profile A(δ)
for δ the two-photon detuning frequency. This effect was
originally demonstrated for a Λ-type TLA with energy
levels |a〉, |b〉, and |c〉 and judiciously chosen rates as
shown in Fig. 1(a). Dressed-state frequency separation
is proportional to the pump-field Rabi frequency Ω,
and this separation yields ATS in the absence of Fano
interference. Fano interference is negligible for large Ω
but must transition smoothly from ATS to EIT as Ω
decreases and the dressed states try to merge thereby
strengthening the Fano interference effect. Under EIT
conditions, complete transparency holds even in the
weak-pump limit.

There are four TLAs: Λ, V, and two ladder (Ξ) cas-
cade systems with upper- and lower-level driving, respec-
tively. Only Λ- and upper-level-driven Ξ TLAs exhibit
Fano interference-induced suppression of absorption [20].
For simplicity, we focus on the Λ TLA to show how the
decaying dressed-states formalism yields distinctive ab-
sorption profiles characteristic of EIT and ATS [21, 22],
but our approach to discern EIT from ATS is indepen-
dent of the choice of TLA so directly applicable to upper-
level-driven Ξ-type TLA.

We use a semiclassical description with decay and de-
phasing rates manually inserted. The EM response to
the probe is proportional to the probe-induced excited
coherence corresponding to the off-diagonal TLA den-
sity matrix element σab. The steady-state solution to
linear order of the probe electric field has all popu-
lation in |b〉 so excited coherence at the probed tran-
sition depends only on dephasing rates Γab and Γbc:
σab = α/[δ +∆− iΓab −Ω2/(δ − iΓbc)], with ∆ the one-
photon detuning and α the probe Rabi frequency [21].

Linear absorption A ∝ Im(σab), shown in Figs. 1(b-d),
has spectral poles δ± = −∆/2+i(Γab+Γbc)/2±[Ω2+(∆−
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FIG. 1: (Color online) (a) Λ-type TLA with probe (pump)
driving field with Rabi frequency α (Ω), which probes (drives)
the |a〉 ↔ |b〉 (|a〉 ↔ |c〉) transition. (b-d) Absorp-
tion A vs. two-photon detuning δ (red dots) for resonant
(∆ = 0) pump with Γab = 1, Γbc = 0.1 and various
Ω with best fits to AEIT(C+, C−, γ+, γ−) (blue solid) and
AATS(C, γ, δ0) (green dashed) models calculated for (b) weak
Ω with good fit to AEIT(2.14, 1.89, 0.581, 0.520) and poor
fit to closest AATS(0.532, 0.633, 0.712), (c) intermediate Ω
with poor fit to closest AATS(0.472, 0.512, 1.03) as well as
AEIT(88.3, 88.3, 0.75, 0.752), and (d) strong Ω with poor fit
to closest AEIT(1.3× 103, 1.3× 103 , 2.92, 2.92) and good fit to
AATS(0.499, 0.521, 3.05).

iΓab+iΓbc)
2/4]1/2, which produce resonant contributions

to atomic response, A± = S±/(δ − δ±), with strengths
S± = ±(δ± − iΓbc)/(δ+ − δ−). These resonant contribu-
tions can be attributed to “decaying-dressed states” [21]
with frequencies and dephasing rates given by Re(δ±)
and Im(δ±), respectively. Decaying-dressed states arise
from the interaction between dressed states with eigenen-
ergies −∆/2 ± (Ω2 + ∆2/4)1/2 and two reservoirs with
decay rates Γab and Γbc. This interaction is affected
by the pump in two ways: separating dressed-states and
exciting the |a〉 ↔ |c〉 transition needed for destructive
Fano interference with the |a〉 ↔ |b〉 reservoir. Unfor-
tunately, the excited |a〉 ↔ |c〉 transition interacts with
the |b〉 ↔ |c〉 reservoir, which is always positive and thus
negates absorption suppression. Finally, one-photon de-
tuning further separates dressed states thereby weaken-
ing Fano interference.

Strong Fano interference, hence strong EIT, occurs for
resonant driving (∆ = 0) where the spectral poles exist
in three Ω-regions: (i) dressed states share a reservoir
Ω ≤ ΩEIT ≡ (Γab − Γbc) /2, (ii) dressed states decay into
distinct reservoirs Ω ≫ Γab, and (iii) intermediate regime
where the dressed-state reservoirs are only partially dis-
tinct. In Ω-region (i) Re(δ±) = 0 = Im(S±) so the ab-
sorption profile comprises two Lorentzians centered at
the origin, one broad and positive and the other narrow
and negative: AEIT = C2

+/(γ
2
+ + δ2) − C2

−/(γ
2
− + δ2).

FIG. 2: (Color online) (a) Akaike weights vs. Rabi fre-
quency for the TLA in Fig. 1 showing a sharp transition
at ΩAIC from EIT model (blue solid) to ATS model (green
dashed); (b) Transition boundary ΩAIC with corresponding
transparency values vs. Γbc.

Hence, low-power pump-induced transparency, where
Fano interference dominates, has a transparency win-
dow without splitting [21]. For strong-pump Ω-region
(ii) δ± ≈ ±Ω + i(Γab + Γbc)/2 and S± ≈ 1/2 so AATS =

C2[1/(γ2+(δ − δ0)
2
)+1/(γ2+(δ + δ0)

2
)], corresponding

to the sum of two equal-width Lorentzians shifted from
the origin by δ0 ≈ ±Ω.

Figures 1(b-d) demonstrate how well these EIT and
ATS models fit calculated absorption profiles, but an
objective criterion is needed to discern the best model
or whether the data are inconclusive. Akaike’s Infor-
mation Criterion (AIC) identifies the most informative
model based on Kullback-Leibler divergence (relative en-
tropy), which is the average logarithmic difference be-
tween two distributions with respect to the first distribu-
tion. AIC quantifies the information lost when model Ai

with Ki fitting parameters is used to fit actual data:
Ii = −2 logLi + 2Ki for Li the maximum likelihood for
model Ai with penalty 2Ki for fitting parameters [17].

We demonstrate AIC-based testing by fitting an ab-
sorption dataset D = {A(δj); |δj | ≤ 5}, incrementing in
steps ∆δj = 0.05, for the TLA in Fig. 1(a) to models
AEIT and AATS using the NonlinearModelFit function
in MathematicaTM, which can calculate AIC. The rela-
tive likelihood of model Ai out of n models is its Akaike
weight wi = e−Ii/2/

∑n
k=1 e

−Ik/2 depicted in Fig. 2(a).
This figure shows that, based on AIC, the EIT model ex-
plains data with 100% likelihood for all Ω < ΩAIC = 0.86.
Figure 2(b) shows that increasing Γbc reduces the EIT
threshold ΩAIC and guides devising EIT experiments.

Testing for EIT is affected by the fact that experiments
have additional complexities such as one-photon detun-
ing or more than three energy levels, but these complex-
ities do not negate the validity of our test; rather these
complications just make it harder to pass the EIT test.
Consequently, one can construct and test more general
models that accommodate these extra features because
AIC allows relative testing between any number of mod-
els. The corresponding signatures of Fano interference in
generalized models can be identified thus revealing gen-
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FIG. 3: (Color online) (a) Per-point weights w̄i for the condi-
tions of Fig. 1 as a function of pump-field Rabi frequency Ω
illustrate three distinct regions: Ω < ΩEIT = 0.45, where
the EIT model (blue) dominates unconditionally; 0.45 < Ω <

0.86, where the ATS model (green) shows non-zero likelihood;
Ω > 0.86, ATS model dominates. The presence of Gaussian
noise with standard derivation σ = 0.1 (red dots) [σ = 0.01
(burgundy dots)] affects the per-point weights for EIT and
ATS models leading to the absence of unconditional domi-
nance by the EIT model. (b) In the weak-pump limit and a
poor signal-to-noise ratio, both models are equally likely to
fit data (red dots).

uine EIT effects.

A more important issue of working with experimental
datasets D = {A(δj)} is that experiments are noisy so
each run produces a different dataset, say Dℓ, with many
data points measured. In turn, the Akaike weight reveals
the likelihood of describing a dataset Dℓ that becomes
binary (0 or 1), hence conclusive, for large datasets as
shown in Fig. 2(a). Consequently, one will conclusively
say after each run which model pertains, but, because of
noise, this conclusion could vary from run to run. In-
tuitively the best model should be picked more often,
however, experimental data are not reported on per run
basis. Experimental data are typically reported as mean
values with error bars representing the confidence inter-
val for the data. Hence we need to adapt the AIC based
testing to the way experimental data are reported.

Akaike’s information according to the least-squares
analysis is I = N log(σ̂2) + 2K for σ̂2 =

∑N
j=1 ǫ̂

2
j/N

and ǫ̂2j the estimated residuals from the fitted model
[17]. Technical noise, however, blurs the distinction be-
tween models {Ai} causing Akaike’s information to be-
come I = N log(σ̂2+σ̂2

exp)+2K with aforementioned con-
sequences. Hence, we propose a fitness test for Akaike’s
information obtained from reported experimental data.

Our fitness test uses a per-point (mean) AIC contri-
bution Ī = I/N to calculate a per-point weight for the
ith model: w̄i = exp(−Īi/2)/

∑n
k=1 exp(−Īk/2). These

unnormalized per-point weights exp(−Īi/2) converge to
1/

√

σ̂2
i for large datasets; for noisy data this yields equal

per-point weights for all models as expected intuitively.

We simulate a noisy absorption profile by gener-
ating data Dℓ according to 〈A(δj)〉 = (1 + ξ)A(δj)
for ξ randomly chosen from the normal distribution
exp

[

−x2/2σ2
]

/
√
2πσ. Figure 3(a) shows our per-point

weights for generated data with no noise, small noise
and moderate noise for the conditions of Fig. 1. In
no noise case and Ω < ΩEIT = 0.45, the ATS model
fails and has per-point weight: w̄2 = 0; beyond the
EIT threshold ΩEIT, the per-point weight for ATS starts
to increases with both models describing the absorption
profile equally well at ΩAIC = 0.86. This agrees with
intuition about fitting models, especially a continuous
trade-off between models in the intermediate regime. It
is also intuitive to expect that under noisy conditions
and weak pump, Ω2 < Ω2

σ = 2σΓabΓbc/(1 − 2σ), in-
duced transparency is buried in noise, 1 − Im[σab(δ =
0,Ω)]/Im[σab(δ = 0,Ω = 0)] < 2σ, and both mod-
els account for the absorption profile equally well [see
Fig. 3(b)]. Consequently, at Ω = 0 and any amount of
noise, per-point weights are equal to 0.5 and results are
inconclusive. Increasing the pump field, however, favors
the EIT model until it gives way to ATS dominance for
pump strength greater than ΩAIC. Therefore, a convinc-
ing EIT demonstration requires suppression of technical
noise to the point that our per-point weights become well
separated.

We apply our theory to the recent observation of in-
duced transmission (i.e. transparency), reported as EIT,
for an open transmission line of a superconducting circuit
with a single flux-type artificial atom (‘flux qubit’) [23].
In contrast to TLA system discussed here, a flux qubit
driven/probed by microwave fields, which are polarized
and confined to one dimension, presents a nearly lossless
upper-pumped Ξ system. Nevertheless, EIT testing of
this observation is straightforward, with absorption be-
ing effectively replaced by reflection, since their analysis
shows that transmission coefficient agrees with the elec-
tromagnetic response for a TLA: t = 1− (γab/2)/[Γab +
iδ+Ω2/(Γbc+ iδ)] with our Rabi frequency Ω being half
their Rabi frequency [23].

Induced transparency is evident from calculating Re(t)
for the probe field in the presence of the control field.
Their system has population relaxation rate γab/2π =
11 MHz and dephasing rates Γab/2π = 7.2 MHz and
Γbc = 0.96Γab. Therefore, the transparency window ap-
pears for a control field amplitude of Ω/2π = 6 MHz,
which exceeds ΩEIT/2π = 0.15 MHz so the experiment
operates in a region where demonstrating Fano interfer-
ence must be inconclusive.

In fact the theoretical transmission curve based on the
reported parameters, shown in Fig. 4(a), is indistinguish-
able from the best-fit ATS model and clearly distinct
from the EIT model. This is further corroborated by
our per-point weight that yields w̄1 = 0.03 implying that
the result is far from EIT. Whereas the reported induced
transparency suffices for switching of propagating waves
in a superconducting circuit [23], our objective test shows
conclusively that they demonstrated ATS and not EIT.
Due to noise, however, the actual experimental data

shown in Fig. 4(b) differs from the theoretical prediction
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FIG. 4: (Color online) Transmission Re(t) vs. two-photon
detuning δ for (a) theoretical curve (red dots) with param-
eters taken from Ref. [23] and control-field amplitude Ω =
6 MHz compared to the best-fit AEIT(25.4, 24.2, 6.36, 6.15)
(blue solid) and AATS(4.42, 7.1, 6.1) (green dashes) and
(b) actual experimental data form Ref. [23] (red dots)
vs. best-fit AEIT(11.8, 9.08, 6.77, 5.66) (blue solid) and
AATS(4.59, 7.29, 5.49).

discussed above and shown in Fig. 4(a) so a reported
dataset does not conclusively show EIT nor rule it out.
That is, optimal choices of AEIT and AATS seem to fit
the data equally well. Yet, there is a slight preference for
ATS according to our per-point weight criterion, w̄1 =
0.48 and w̄2 = 0.52, in the weak-field limit with obvious
favoring of ATS in the strong-field regime.

In conclusion, we propose an objective way to discern
ATS vs. EIT from experimental data obtained from TLA
systems. Our test exhibits a smooth transition from
ATS to EIT through three qualitative regions as the
strength of the driving field Ω decreases. The sought-
after EIT signal is due to Fano interference manifested
as a narrow negative Lorentzian in the absorption data
for TLA accompanied by the absence of splitting, which
ATS lacks. Akaike’s information criterion objectively
finds this evidence of Fano interference and ascertains
from each dataset whether EIT or ATS pertains. We
have introduced a per-point weight that accommodates
experimental noise and readily produces a conclusion of
whether EIT or ATS pertain as well as provides a “don’t
know” alternative for inconclusive experiments. Further-
more, Akaike’s information criterion, combined with our
per-point weights, is not limited to our simple EIT and
ATS models but allows inclusion of additional models.
Hence, data can be tested against more complicated mod-
els that take care of additional levels, one-photon detun-
ings as well as inhomogeneous broadenings and may have
a greater likelihood to return a definite answer with oth-
erwise inconclusive experiment.

The EIT vs. ATS distinction is especially important
for applications, such as sensing, where the weak-pump
regime is necessary but transparency and sensitivity are
required. Nowadays EIT demonstrations are attempted
in a multitude of experimental systems, and a versatile
test is needed that can unambiguously reveal whether
the requisite conditions have been met. We have pro-

vided such a test that, provided data from adequate ex-
periments, objectively discerns whether ATS or EIT per-
tains for a given experiment without the need of prior
knowledge or disposition about the system.
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