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We have demonstrated quantum control of the spin-orbit interaction based on the Autler-Townes
(AC Stark) effect in a molecular system using a cw optical field. We show that the enhancement
of the spin-orbit interaction between a pair of weakly interacting singlet-triplet rovibrational levels,
G1Πg(v=12, J=21, f ) ∼ 13Σ−

g (v=1, N=21, f ), separated by 750 MHz in the lithium dimer, depends
on the Rabi frequency (laser power) of the control laser.

PACS numbers: 42.50.Hz, 31.15.aj, 33.40.+f

The interaction between the spin and the orbital angular momenta (spin-orbit interaction) of the electron in an
atom or a molecule often can be neglected or treated as a perturbation. However, when relativistic effects are not
negligible, the spin-orbit interaction must be taken into account. It can cause mixing of electronic states of different
spin-multiplicity, with the degree of mixing dependent on the strength of the spin-orbit interaction as well as the
energy separation between the interacting states. It is also well known that, in the presence of strong electromagnetic
fields, the energy levels in atoms or molecules experience shifts in their positions due to the Autler-Townes (AT) effect
[1]. Thus control of the spin-orbit interaction can be realized using resonant or non-resonant laser fields as an external
control mechanism. Several recent theoretical studies have been devoted to this subject [2–5].
Specific possible applications of quantum control of the spin-orbit interaction include enhancing the rate of popu-

lation transfer to otherwise ”dark” states, either by increasing the mixing between existing perturbed pairs of levels,
or by creating mixed levels out of previously unmixed ones. In alkali molecules, states with mixed character (i.e.
singlet and triplet) have been used as ”gateways” or ”windows” for accessing states with different spin character
than the ground state [6–9]. Such perturbed levels have also been used as intermediate levels in the transfer of cold
molecules formed at long range in the triplet a3Σ+ state to deeply bound levels of the singlet X1Σ+ ground state
[10–14]. Thus, the ability to enhance the mixing of the spin character of singlet-triplet pairs of states could be used to
improve the transfer rates in such schemes. Also there is a great deal of interest in controlling photochemical reactions
and intersystem crossings by means of optical fields. For example, control of the chemical reaction potential energy
surface using the non-resonant dynamic Stark effect has been demonstrated [15]. In principle, this control scheme
could also be used in experiments that investigate the role of electron spin in entrance-channel controlled and excited
state reactive collisions. Another possible application of control of the spin-orbit interaction with external fields is
preparation of optical spin switches [3, 16–18].
In this work we demonstrate all-optical control of the spin-orbit interaction using the lithium dimer (7Li2) and a

narrow band cw laser as the control field. The small linewidth (0.5 MHz) of the cw control laser allows the experiments
to be performed state selectively using a specific singlet-triplet pair of rovibrational levels mixed by the spin-orbit
interaction. We chose to work with 7Li2, since for molecules with light nuclei, the spin and orbital angular momenta
are weakly coupled and therefore the spin-orbit interaction is small. Thus the interacting levels can lie very close
in energy without being significantly mixed. We use the G1Πg(v=12, J=21, f ) ∼ 13Σ−

g (v=1, N=21, f ) pair of
rovibrational levels (denoted as |S〉 ∼ |T 〉, see Fig. 1), which are only separated by δSO = 750MHz, as is evident from
Fig. 2. In the absence of a control field, the nominally singlet (triplet) level has 87% singlet (triplet) and 13% triplet
(singlet) character, determined using the ratios of the intensities from OODR laser excitation scans of the triplet and
singlet peaks as described in [19]. The 13Σ−

g electronic state has negligible hyperfine structure [20], and thus the
predominantly triplet state 13Σ−

g (v=1, N=21, f ) can be considered to be a single level in the analysis.
The 7Li2 dimers were generated in a heat pipe oven loaded with Lithium metal heated to a temperature of 850 K
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(estimated from the Doppler linewidth of a single laser excitation). Argon at a pressure of about 150 mTorr was used
as a buffer gas. Argon and lithium atom densities were sufficiently low that level changing collisions can be neglected.
The excitation scheme used in the experiment is depicted in Fig. 1. The lasers used were Coherent 699-29 narrow
band tunable ring dye lasers. The pump (L1) and probe (L2) lasers counterpropagated through the oven. The control
laser (L3) copropagated with the pump laser. The pump and probe laser powers were kept as low as possible while
maintaining a good signal to noise ratio; P1 = 100 µW and P2 = 2.5 mW. The spot radii of the pump and probe
lasers (r1 = 125 µm and r2 =130 µm) were chosen to be about half that of the control laser (r3 = 230 µm). Thus only
molecules that interact with the central portion of the control laser Gaussian spatial profile (TEM00) were probed,
thereby ensuring control laser electric field homogeneity in the interaction region.
In the experiment we have observed the spin character of the mixed pair of levels |S〉 ∼ |T 〉 by simultaneously

recording fluorescence from them to lower lying singlet and triplet levels (see Fig. 1). In order to monitor the triplet
character, we detected fluorescence to a few lower lying rovibrational levels of the b3Πu electronic state (collectively
labeled |5〉 in Fig. 1), around 450nm, with a PMT mounted on one of the side arms of the heatpipe. To prevent
the yellow and red laser scatter from saturating the PMT, blue band pass glass filter was placed in front of the
photocathode. Because of spectral congestion, we chose to monitor the singlet character by observing fluorescence to
a specific A1Σ+

u rovibrational level, level |4〉 in Fig. 1, at 559.4nm using a SPEX 1404 double grating monochromator
(equipped with a cooled PMT) in the role of a narrow band pass filter. The pump laser was mechanically modulated
and the signal from each PMT was amplified using a lock-in amplifier.
To model theoretically the experimental results and to confirm the nature of the observed fluorescence line shapes,

we have followed the theoretical framework introduced in [2] and the standard density matrix formalism [21]. The
evolution of the density matrix ρ of our system is governed by the equation of motion

∂ρ

∂t
= −

i

~
[H, ρ] + relaxation terms, (1)

where relaxation terms account for physical processes such as spontaneous decay of levels, collisions, etc. [21].
The total Hamiltonian H of the system can be expressed as the sum of three parts H = Hmol + HSO + Hint.

The Hamiltonian of the unperturbed molecule, Hmol, is diagonal in the basis set of the unperturbed molecular states
and can be expressed as Hmol =

∑
k
εk|k〉〈k|, where the εk are its eigenvalues, and the levels are labeled as in

Fig. 1. Because the spin-orbit interaction in 7Li2 (∼0.1 cm−1) is much smaller than the typical spacing between the
individual rovibrational levels in the electronic states (∼20 cm−1 at J = 20) we consider that the perturbation HSO

mixes only the closely spaced pair of unperturbed pure singlet |S0〉 and pure triplet |T0〉 states (eigenstates of Hmol).
The result of the spin-orbit perturbation as shown in Fig. 1 is the creation of the mixed states |S〉 and |T 〉 given by
|S〉 = α|S0〉 − β|T0〉 and |T 〉 = α|T0〉 + β|S0〉, where α and β are mixing coefficients and α2 + β2 = 1 (α2 = 0.87
and β2 = 0.13). The spin-orbit interaction part of the Hamiltonian of the system, HSO, can be expressed simply as
HSO = αβδSO [7, 19], where δSO is the separation in energy between the mixed levels |S〉 and |T 〉. Finally, once the
laser fields are turned on, we must include Hint in the Hamiltonian. Hint represents the interaction of the molecule
with the optical fields, and in the dipole approximation has the form −~µ · ~E, where ~µ is the transition dipole moment
between the levels coupled by a laser with electric field ~E.
We solve Eq. (1) under the steady state condition in the interaction picture where the Hamiltonian of the system,

HI , after applying the rotating wave approximation, has the explicit form

HI

~
= −δ1|2〉〈2| − (δ1 + δ2)|S0〉〈S0| − (δ1 + δ2 − δ3)|3〉〈3|

− (δ1 + δ2 + δ0SO)|T0〉〈T0|+
Ω1

2
(|2〉〈1|+ |1〉〈2|)

+
Ω2

2
(|S0〉〈2|+ |2〉〈S0|) +

Ω3

2
(|3〉〈S0|+ |S0〉〈3|)

+ αβδSO(|S0〉〈T0|+ |T0〉〈S0|) (2)

which is written in a basis of levels that are unperturbed by either the optical fields or the spin-orbit interaction. Here
δi ≡ ∆i± kivz is the velocity dependent detuning of the ith laser and ∆i ≡ ωi−ωi,res are the detunings for molecules
at rest in the lab frame. ωi is the frequency of the ith laser and ωi,res is the resonance transition frequency between
the corresponding unperturbed levels. δ0SO is the splitting of the unperturbed levels (note δ0SO = (α2 − β2)δSO).
Ωi = µiEi/~ is the Rabi frequency of the ith laser.
When only the weak pump and the probe lasers are present, the laser interactions are minimal, and the upper

levels are essentially the perturbed spin-orbit pair |S〉 and |T 〉. The fluorescence excitation spectrum of the |S〉 ∼ |T 〉
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system as a function of the probe laser detuning shows a two peak pattern as expected (see Fig. 2). We have used
this relatively simple two laser excitation spectrum to test the theoretical model. As Fig. 2 shows, there is very good
agreement between the two experimental traces (solid lines) and the simulations (dotted lines). The parameters used
in the model were taken either from independent measurements or from theoretical calculations.
When the control field is turned on, resonantly coupling states |S〉 and |3〉, we observe the nominally singlet peak

splitting into two components due to the AT effect as shown in Fig. 3. The separation between the two components,
labeled |S,−AT 〉 and |S,+AT 〉 (see Fig. 1), of the split singlet peak is determined by the Rabi frequency of the control
laser. The |S,−AT 〉 component of the pair is shifted closer to the nearby |T 〉 state which leads to stronger spin-orbit
interaction between them. As a result, the |S,−AT 〉 component acquires more triplet character, while the |T 〉 level
shifts slightly and acquires more singlet character (transformed into the modified state |T ′〉), demonstrated by the
significant increase in the area of the nominally 13Σ−

g (v=1, N=21, f ) peak in the singlet detection channel as can be
seen in Fig. 3b. At the same time the singlet character of the |S,+AT 〉 component is enhanced due to its increased
separation from the |T 〉 state (which decreases its mixing with the triplet level). The two AT split components of the
predominantly singlet level now have different amounts of singlet and triplet character from each other. This results
in an asymmetric line shape of the AT pair intensity distribution, in both the singlet and triplet detection channels,
as is evident from Fig. 3a. We note that asymmetric AT split intensity distributions can also be observed when the
control field is slightly off resonance. But in the present case, the fact that the asymmetry is in the opposite sense for
the singlet and triplet channels shows that the asymmetry observed here is due to the different amount of mixing of
the two components of the AT pair with the |T 〉 state.
To estimate how the character of the nominally triplet level 13Σ−

g (v=1, N=21, f ) changes in the presence of the
control laser we consider that state |T ′〉 is a superposition of the unperturbed levels |T0〉, |S0〉, and |3〉. We write
|T ′〉 = α′|T0〉+ β′|S0〉+ γ′|3〉 where α′, β′, and γ′ are the mixing coefficients with the control laser on. The spin-orbit
interaction only mixes |T0〉 with |S0〉 but not with |3〉 due to the spin-orbit selection rules (g = u, and ∆J = 0). Thus
the mixing of level |3〉 character into state |T ′〉 only occurs via the relatively small β′|S0〉 component in the latter.
Consequently in our simple model, we set γ′ ≈ 0. Using I(t)|T ′〉/I(s)|T ′〉 = εα′2/β′2, where I(t)|T ′〉 and I(s)|T ′〉 are
the triplet and singlet channel fluorescence intensities (peak areas) of state |T ′〉 in Fig. 3a, and the normalization
condition α′2 + β′2 = 1, we calculate α′2 = 0.72 and β′2 = 0.28. The relative efficiency of detecting singlet vs. triplet
fluorescence ε is calculated from the data in Fig. 2 following Ref. [19]. By comparing the values of β2 and β′2, we see
that the singlet character of the nominally triplet state has been enhanced by more than a factor of two, from 13%
to 28%, when the control laser with power of 700 mW is turned on.
By varying the amplitude of the control laser field one can enhance or reduce the spin-orbit interaction. The control

effect depends on the magnitude of the induced shift in the position of the levels relative to the natural spin-orbit
splitting δSO. Fig. 4 shows probe laser scans with detection of the singlet fluorescence for a number of power levels
of the control laser. At low power values (100 mW), there is no measurable enhancement of the mixing and the AT
split components are symmetric. Increasing the control laser power leads to an increase in the mixing. The leftmost
peak, corresponding to the level with primarily 13Σ−

g (v=1, N=21, f ) (triplet) character grows in the singlet detection
channel and the AT split pair of peaks becomes more and more asymmetric. At higher control laser powers (500-700
mW) a shift in the position as well as broadening of the 13Σ−

g (v=1, N=21, f ) peak can be observed due to the
non-resonant AC-Stark effect of the control laser and the increased spin-orbit interaction of |T ′〉 with the |S,−AT 〉
component.
In summary, we have demonstrated all-optical frequency domain quantum control of the spin-orbit interaction in a

molecular system. We observed that the application of a strong control field to the singlet component of a 7Li2 G1Πg

∼ 13Σ−
g singlet-triplet weakly mixed pair of rovibrational levels leads to a significant enhancement of their mixing,

and consequently to a significant change in their quantum state characters. We were able to enhance the singlet
character of the predominantly triplet state from 13% to 28%. The change in magnitude of the spin-orbit interaction
depends on the Rabi frequency (laser power) of the control laser. The results of our proof-of-concept demonstration
can be extended to experiments with stronger control fields, bearing in mind that the control laser does not need
to be resonant with a populated ground state level. This feature is particularly useful for mitigating the effects of
multiphoton ionization in such experiments.
We gratefully acknowledge valuable discussions with Dr. F. Spano on the theoretical model and financial support

from NSF Grants PHY 0555608, PHY 0855502, and PHY 0968898.
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FIG. 1: Thermal population in level |1〉 is excited to level |2〉 by the weak pump laser L1 (15810.158 cm−1), and then further
excited by tuning the weak probe field L2 to the mixed pair of levels |T 〉 and |S〉, with resonances at 17666.136 cm−1 and
17666.162 cm−1, respectively. Laser L3 is set on resonance with the |S〉 ↔ |3〉 transition at 17026.872 cm−1. Levels |S0〉 and
|T0〉 are the ’pure’ singlet and triplet basis states, respectively (unperturbed basis set). With the control laser on, |S〉 and |T 〉
evolve into |S,−AT 〉, |S,+AT 〉, and |T ′〉. The parameters µ1 = 2.1 D, µ2 = 1.8 D, µ3 = 3.3 D, τ2=18.78 ns, τS0

=16.21 ns,
τT0

=9.27 ns, and τ3=18.90 ns were calculated from molecular data [20, 22–25] using LEVEL [26].
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FIG. 2: OODR spectra recorded by monitoring the fluorescence to the A1Σ+
u (v

′=10, J ′=21) level (singlet channel - black line)
and to a few low lying rovibrational levels of the b3Πu state (triplet channel - red line) as a function of the detuning of the probe
laser. The control laser was blocked during these scans. The dotted lines represent simulations of the experimental spectra.

-1.0 -0.5 0.0 0.5 1.0

P
3
 = 700 mW 

3
 = 1328 MHz

+ AT- AT

G
1

g
(v=12, J=21, f)

In
te

n
si

ty
 (

A
rb

it
ra

ry
 U

n
it

s)

1
3

g

-
(v=1, N=21, f)

(a)

G
1

g
(v=12, J=21, f)

Probe laser frequency (GHz)

In
te

n
si

ty
 (

A
rb

it
ra

ry
 U

n
it

s)

 P
3
 = 0mW

 P
3
 = 700mW

1
3

g

-
(v=1, N=21, f)

(b)

FIG. 3: (a) The singlet (black) and triplet (red) channel spectra recorded simultaneously in the presence of the control laser.
Since the |S,−AT 〉 component has acquired more triplet character (and the |S,+AT 〉 component has lost triplet character)
their intensities are asymmetric in opposite directions for the singlet and triplet signals. Dotted lines represent simulations.
The parameters for L1 and L2 were the same as in Fig. 2. (b) Comparison of the singlet detection channel spectra with (P3 =
700 mW) and without (P3 = 0 mW) the control laser. It can be seen that the singlet character of the predominantly triplet
level 13Σ−

g (v=1, N=21, f ) is dramatically enhanced by the presence of the control laser.
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FIG. 4: Dependence of the singlet-triplet mixing and the magnitude of the AT splitting on the control laser power. The spectra
were recorded by monitoring singlet fluorescence to the A1Σ+

u (v
′=10, J ′=21) level. The leftmost peak in each spectrum

corresponds to fluorescence from the level |T ′〉 with primarily 13Σ−

g (v=1, N=21, f ) character while the peak(s) on the right
correspond to fluorescence from the AT split pair of levels |S,−AT 〉 and |S,+AT 〉 with primarily G1Πg(v=12, J=21, f )
character.


