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Density Functional Resonance Theory (DFRT) is a complex-scaled version of ground-state Density
Functional Theory (DFT) that allows one to calculate the in-principle exact resonance energies
and lifetimes of metastable anions. In this formalism, the energy and lifetime of the lowest-energy
resonance of unbound systems is encoded into a complex “density” that can be obtained via complex-
coordinate scaling. This complex density is used as the primary variable in a DFRT calculation just
as the ground-state density would be used as the primary variable in DFT. As in DFT, there
exists a mapping of the N -electron interacting system to a Kohn-Sham system of N non-interacting
particles. This mapping facilitates self consistent calculations with an initial guess for the complex
density, as illustrated with an exactly-solvable model system.

Density Functional Theory (DFT) [1–3] provides one
of the most accurate and reliable methods to calculate
the ground-state electronic properties of molecules, clus-
ters, and materials from first principles. It is one of
the workhorses of computational quantum chemistry [4].
In addition, DFT’s time-dependent extension (TDDFT)
[5] can now be applied to a wealth of excited-state and
time-dependent properties in both linear and non-linear
regimes [6]. When the N -electron system of interest
has no bound ground state, however, neither DFT nor
TDDFT can be applied in a straightforward way to cal-
culate properties of long lived metastable states such as
resonance energies and lifetimes. A correct DFT calcu-
lation converges to the true ground state by ionizing the
system, thus leaving no reliable starting point for a sub-
sequent TDDFT calculation on the N -electron system.
In practice, a finite simulation box or basis set can make
the system artificially bound [7, 8], but information about
the relevant lifetimes is lost in the process.

We address here this fundamental limitation of ground-
state DFT, and propose a solution.

Consider a system of N interacting electrons in an ex-
ternal potential ṽ(r), with a ground-state electron den-
sity ñ(r) = 〈Ψ̃0|n̂(r)|Ψ̃0〉 where |Ψ̃0〉 is the many-body

ground state wavefunction and n̂(r) =
∑N
i=1 δ(r − r̂i) is

the density operator. The potential, ṽ(r), is set to be
everywhere positive and go to a positive constant C as
|r| → ∞ such that ṽ(r) can support a bound ground state
with energy Ẽ > 0. Next we ask how the gound-state
electron density changes when a smooth step is added to
ṽ(r) at a radius |R| that is larger than the range of ṽ(r).
The step is such that the new potential v(r) coincides
with ṽ(r) for |r| < |R| but goes to zero at infinity instead
of going to a positive constant. Since v(r) is everywhere
positive and goes to zero at infinity, allN electrons tunnel
out of the steps and v(r) supports no bound states. The
correct ground state energy E → 0+ as all electrons leave
the system with zero kinetic energy, and the new density,

n(r), is delocalized through all space. In practical calcu-
lations, however, v(r) and ṽ(r) cannot be distinguished if
|R| is beyond the size of the simulation box. The result
provided by ground-state DFT with such a simulation
box and using the exact exchange-correlation functional
(which should give the in-principle exact ground-state en-
ergy) is not E, but Ẽ > 0, and the density obtained is
ñ(r) as if the system were bound. Even when the simu-
lation box is large enough to include the steps, use of a
finite basis-set of localized functions will artificially bind
all electrons. Clearly, such calculations do not provide
approximations to the true ground-state energy and den-
sity of v(r), but to those of its lowest-energy resonance
(LER).

The purpose of this letter is to establish an analog
of KS-DFT that provides the in-principle exact LER-
density along with its energy and lifetime for any finite
|R|. This analog is motivated by the one-to-one mapping
between complex-scaled external potentials and the asso-
ciated complex LER density functions [9]. As |R| → ∞,
the results coincide with those of standard KS-DFT. For
higher-energy resonances, TDDFT is needed as a matter
of principle [10, 11].

First, we note that as |R| → ∞, the complex density
nθ(r) associated with the LER of

Ĥv = T̂ + V̂ee +

∫
drn̂(r)v(r) , (1)

becomes equal to the complex density ñθ(r) associated to

ṽ(reiθ). In Eq. 1, T̂ = − 1
2

∑N
i=1∇2

i is the kinetic energy

operator and V̂ee =
∑N
i,j 6=i |ri − rj |−1 is the electron-

electron interaction (atomic units are used throughout).
To find nθ(r), we complex-scale Ĥv by multiplying all
electron coordinates by the phase factor eiθ, diagonalize
the resulting non-hermitian operator Ĥθ

v , and calculate
the bi-expectation value of n̂(r) as:

nθ(r) = 〈ΨL
θ |n̂(r)|ΨR

θ 〉 , (2)



2

where |ΨR
θ 〉 and 〈ΨL

θ | are the right and left eigenstates

corresponding to the complex eigenvalue of Ĥθ
v that has

the smallest positive real part among all eigenvalues in
the non-rotating spectrum of Ĥθ

v . For a detailed review
of this technique and related methods in non-hermitian
Quantum Mechanics, see ref. [12, 13]. The computational
cost of this prescription scales exponentially with the
number of particles. Since nθ(r) → ñθ(r) as |R| → ∞,
and since there is a one-to-one correspondence between
nθ(r) and v(reiθ) [9, 14], the complex energy of the LER
is a functional of nθ, Eθ[nθ], and goes to Ẽ (not E), as
|R| → ∞. Its lifetime L is given by (−2Im(Eθ))

−1, and
for any finite |R|,

Eθ[nθ] = E [nθ]−
i

2
L−1[nθ] , (3)

where the resonance energy E tends to Ẽ as |R| → ∞.
According to the complex variational principle of Ref. [9],
the one-to-one mapping between nθ(r) and v(reiθ) ap-
plies to complex densities that can be obtained via
Eq. 2 from an antisymmetric N -electron wavefunction
(i.e. they are N -representable complex densities).

To build a complex analog of Kohn-Sham DFT us-
ing nθ(r) as the basic variable, we first map the system
of interacting electrons (whose LER density is nθ(r)) to
one of N particles moving independently in a complex
“Kohn-Sham” potential, vθs(r), defined such that its N
occupied complex orbitals {φθi (r)} yield the interacting

LER-density via nθ(r) =
∑N
i=1〈φ

θ,L
i |n̂(r)|φθ,Ri 〉. In Moi-

seyev’s Hermitian representation of complex-scaling [15],
the complex Kohn-Sham equations are:(

ĥ1 − εi −ĥ2 − 2τ−1i
ĥ2 + 2τ−1i ĥ1 − εi

)(
Re(φθi )
Im(φθi )

)
= 0 , (4)

where ĥ1 = − 1
2 cos(2θ)∇2 + Re(vθs(r)), and ĥ2 =

1
2 sin(2θ)∇2 + Im(vθs(r)). The set of {εi} and {τi} pro-
vide the orbital resonance energies and lifetimes of the
Kohn-Sham particles.

Second, we write Eθ[nθ] as:

Eθ[nθ] = T θs [nθ] +

∫
dr nθ(r)v(reiθ)

+EθH[nθ] + EθXC[nθ] (5)

in analogy to standard KS-DFT, and require: T θs [nθ] =
e−2iθTs[nθ] and EθH[nθ] = e−iθEH[nθ], where Ts[nθ]
and EH[nθ] are the standard non-interacting kinetic and
Hartree functionals evaluated at the complex densities.
Without an explicit expression for EθXC[nθ], however, the
total energy cannot be calculated via Eq. 5. Related
work by Ernzerhof [14] and physical intuition suggest
that bound ground-state functionals are applicable here.
They are, in any case, the most natural candidates. Eq. 5
then defines EθXC[nθ]. The complex variational principle
[13] along with the assumption that the orbitals used to

construct the density can be expanded in an orthonormal
basis leads to the Euler-Lagrange equation:

δEθ[nθ]

δnθ
− µ

∫
drnθ(r) = 0 . (6)

Performing the variation in Eq. 5 and comparing with
Eq. 4 leads to an expression for the Kohn-Sham potential
that is again analogous to that of standard KS-DFT:

vθs(r) = v(reiθ) + e−iθvH[nθ](r) + vθXC[nθ](r) , (7)

where vθXC[nθ](r) = δEθXC[nθ]/δnθ(r)|LER.
The simplest case where all essential aspects of this

formalism can be illustrated is a system of two interact-
ing electrons moving in a one-dimensional potential that
supports only metastable states. We study a Hamilto-
nian where the electrons interact via a soft-Coulomb po-
tential of strength λ:

Ĥ =

2∑
i=1

[
−1

2

d2

dx2i
+ v(xi)

]
+

λ√
1 + (x1 − x2)2

, (8)

using v(x) = a

[
2∑
j=1

(
1 + e−2c(x+(−1)jd)

)−1
− e− x2

b

]
. Its

parent potential ṽ(x) = a(1 − e−x2/b) goes to a as x →
±∞, but v(x) goes down to zero at x ∼ ±d.
Exact solution via the 2-electron wavefunction: The

complex-scaled Hamiltonian Ĥθ = Ĥ({xi} → {xieiθ})
was diagonalized with the Fourier Grid Hamiltonian
(FGH) [16] and Finite Difference Methods. The numer-
ically exact nθ(x) was calculated via Eq. 2. The com-
plex density nθ(x) depends on the value of θ (see Fig. 1),
but for a large enough number of grid points the energy
does not. In the complex-scaling method the resonance
energies are precisely those that remain stationary as θ
changes [13]. Fig. 2 shows the energy for 0 < λ < 1.
Exact KS solution: Two non-interacting electrons in

the potential indicated by solid lines in Fig.3 have the
same nθ(x) as calculated above to one part in 106 (in
the sense that the space integral of the square of the
difference between their real or imaginary parts is less
than 106). When nθ(x) is set to integrate to the number
of electrons (2, here), we verify this potential is given by:

vθs(x) = e−2iθ
∇2
√
nθ(x)

2
√
nθ(x)

− εH + 2iτ−1H , (9)

where εH − 2iτ−1H is the highest occupied complex or-
bital energy (in this case the only one). This is in exact
analogy to real KS-potentials for bound 2-electron sys-
tems where Eq. 9 follows from taking the first functional
derivative of the Von-Weizsacker functional [17].
Exchange: For 2-electron systems, the exchange func-

tional is known in terms of the classical Hartree func-
tional, and Eqs. 4 and 7 were solved employing EθX[nθ] =
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FIG. 1. Exact 2-electron complex densities associated with
the LER of v(x) when using different scaling angles (a = 4,
b = 0.5, c = 4, d = 2, and λ = 1).

− 1
2E

θ
H[nθ] = − 1

2e
−iθEH[nθ]. The complex KS equations

can be solved self-consistently with an initial guess for
nθ. Starting with the non-interacting complex density,
the SCF calculations converged in 4-5 iterations. The re-
sulting complex energies are plotted in Fig. 2 along with
the exact results. For comparison we also plot the re-
sults from calculating the first order perturbation theory
correction to the exact solution of the complex-scaled 2-
electron problem. The latter two yield identical answers
for the resonance energies, and extremely close answers
for the lifetimes for all λ in the range 0 < λ < 1. Thus,
neglecting correlation, we find the average error is ∼ 14%
for the real part and ∼ 35% for the imaginary part of the
total energy. We also compare with standard scattering
calculations using the close-coupling equations under the
bound state approximation [18, 19]. The resonance en-
ergy is predicted by this method with an error of 22%,
comparable to our DFRT exchange-only results.

As in standard KS-DFT, total energies are given by:

Eθ[nθ] =

N∑
i=1

(
εi − 2iτ−1i

)
+ EθHX[nθ]

−
∫
drvθHXnθ(r) (10)

We point out that the θ-independence of the energy is
preserved by the SCF procedure (see Table I). As the
grid-size increases the dependence on θ becomes negli-
gible. This is important, because within a SCF DFRT
calculation one is always solving the 1-body complex KS-
equations. For these equations, one should be able to ef-
ficiently use a large enough basis set or a fine enough grid
to extinguish most of the numerical θ dependence. Thus,
this well-known drawback of the complex-scaling tech-
nique [20–22] is outdone by the benefit of never having
to deal with N -particle wavefunctions, but just 1-body
(complex) densities.

Correlation: It is of interest to calculate the exact
correlation potential, which we do by subtracting the
hartree-exchange contribution from the exact KS poten-
tial. The individual Hartree-exchange and correlation
potentials are shown in Fig. 4. To interpret the fea-
tures in these complex potentials it is useful to distin-
guish between two regions. As the interaction between

Grid θ Re(E) Im(E)

(N = 299) 0.27 4.99895 −0.0149586

0.35 4.99933 −0.0144161

0.43 4.99962 −0.0139792

(N = 1299) 0.27 5.00182 −0.0161045

0.35 5.00198 −0.0159848

0.43 5.00200 −0.0159513

TABLE I. Two-electron resonance energy values in the model
Hamiltonian of Eq. 8 calculated via exchange-only DFRT. As
the grid spacing decreases numerical dependence on θ practi-
cally disappears. (a = 4, b = 0.5, c = 4, d = 2 and λ = 1)

electrons is turned on and λ increases from 0 to 1, the
region around the central well is shifted up in the real
part of the Kohn-Sham potential. This behavior is also
seen in standard KS-DFT, and serves to shift up the po-
sition of the non-interacting orbital energies (in that case
their real part). However, both the real and imaginary
part of the complex Kohn-Sham potential have a second
region outside the central well that shows a dramatic os-
cillatory structure arising purely from the fact that the
state is unbound. It is already known that the decaying
oscillations in the tails of the complex LER wavefunction
are governed by the lifetime of the resonance [23]. These
oscillations serve to produce the correct assymptotic be-
havior in the interacting complex density.

Orbital Energies: Although the ionization energy of
our 2-electron system is strictly zero, it is tempting to
define Iθ ≡ Eθ(N = 1) − Eθ(N = 2) and check whether
it equals minus the highest occupied KS orbital energy,
as Koopmans’ theorem for DFT would suggest. For the
parameters used in Figs.1-4, Eθ(N = 1) = 1.629−0.003i,
Eθ(N = 2) = 4.127−0.014i, but the exact KS eigenvalue
is 2.065− 0.006i. Therefore, in this case the HOMO en-
ergy of the KS system is not equal to −Iθ. This occurs
because there is more than one decay channel. When the
decay is restricted to a single channel the HOMO energy
can be related to the difference between the metastable
complex LER energy and the threshold energy. For ex-
ample, in a system like N−2 that decays to N2, the HOMO
energy of DFRT equals (−A−(Γ/2)i) where A is the neg-
ative electron affinity of N2 (or the ionization potential of
N−2 ) and Γ is the width of the N−2 resonance. Note that
for purely bound ground states Γ = 0 and one recovers
Koopmans’ theorem for DFT.

We are working on the implementation of DFRT to
calculate the lifetime of molecular metastable anions.
The method is also applicable to molecules connected
to metallic leads, as in molecular electronics. Ernzer-
hof and co-workers have developed an approach for that
purpose where complex absorbing potentials are added
within a complex-DFT framework [14, 24]. However, we
emphasize that the complex potentials in DFRT are the
result of a variational calculation, and they are obtained
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Hamiltonian of Eq. 8 calculated exactly with complex scaling,
a first order correction to the non-interacting energy, and our
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FIG. 3. The real and imaginary part of the complex KS po-
tential for the LER of 2 soft-Coulomb interacting electrons in
the model potential, Eq.8. The dashed lines are the real and
imaginary part of the complex-scaled parent potential ṽ(x).
(θ = 0.35, a = 4, b = 0.5, c = 4, d = 2, and λ = 1).

self-consistently for the N -electron system treated as iso-
lated, rather than added to the Hamiltonian from the
start to model an open system.

DFRT should also be applicable to study shape and
Feshbach resonances in low-energy electron scattering
processes [25–27] of growing interest in biological systems
[28–30], atmospheric sciences, lasers, and astrophysics
[31–34].

In summary, DFRT provides an unambiguous prescrip-
tion for calculating negative electron affinities based on
a complex-scaled version of standard ground state DFT.
This complex-scaled version has been cast in a way that
is analogous in practice to KS-DFT. Results on a model
system suggest that the same machinery that has been
developed for KS-DFT yields accurate resonance energies
and lifetimes in DFRT. It remains to be seen if common
approximations to EXC[n] are able to capture the impor-
tant effects that determine properties of real transient
anions. A more detailed study of the complex density
function and various DFRT identities is forthcoming.

In addition to the varied practical applications of the
formalism, DFRT provides a more general theoretical
framework than DFT itself. DFRT allows one to calcu-
late both bound and unbound properties, but it reduces
to standard DFT when the complex transformation is
removed. Due to this link, DFRT can be used as a tool
to shed light on DFT and TDDFT. For example, one
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can explore exact properties of functionals, such as in-
teger discontinuities, across a wide range of both bound
and unbound systems; the response of the complex den-
sity could reveal metastable excitations previously hid-
den in standard linear response TDDFT; derivatives of
the complex density function could extend chemical re-
activity theory to metastable systems. Therefore, DFRT
promises new perspective on many active research areas
in the quantum theory of many-body systems.
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