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Density functional theory (DFT) for electrons at finite temperature is increasingly important in
condensed matter and chemistry. Exact conditions that have proven crucial in constraining and
constructing accurate approximations for ground-state DFT are generalized to finite temperature,
including the adiabatic connection formula. We discuss consequences for functional construction.

PACS numbers:

Because of the small mass ratio between electrons and
nuclei, standard electronic structure calculations treat
the former as being in their ground state, but routinely
account for the finite temperature of the latter, as in ab

initio molecular dynamics [1]. But as electronic struc-
ture methods are applied in ever more esoteric areas, the
need to account for the finite temperature of electrons in-
creases. Phenomena where such effects play a role include
rapid heating of solids via strong laser fields [2], dynamo
effects in giant planets [3], magnetic [4, 5] and supercon-
ducting phase transitions [6, 7], shock waves [8, 9], warm
dense matter [10], and hot plasmas [11–13].

Within density functional theory, the natural frame-
work for treating such effects was created by Mer-
min [14, 15]. Application of that work to the Kohn-
Sham (KS) scheme at finite temperature also yields a
natural approximation: treat KS electrons at finite tem-
perature but use ground-state exchange-correlation (XC)
functionals. This works well in recent calculations [8, 10],
where inclusion of such effects is crucial for accurate
prediction. This assumes that finite-temperature effects
on exchange-correlation are negligible relative to the KS
contributions, which may not always be true.

The uniform electron gas at finite temperature (also
called the one-component plasma) has been well-studied,
and has in the past provided the natural starting point
for DFT studies of such finite-temperature XC effects,
as input into the local density approximation (LDA) at
finite T [16]. However, the LDA is too inaccurate for
most modern applications of DFT, and almost all recent
calculations use a generalized gradient approximation or
hybrid with exchange [17]. The errors of LDA would
typically be enormous relative to the temperature correc-
tions we seek, especially for correlation, and so could lead
to quite misleading results. Accurate calculation of finite
temperature contributions requires accurate approximate
functionals. Magnetic phase transitions bear an addi-
tional difficulty: The low-lying excitations are collective,
i.e., magnons whose description requires non-collinear
version of spin-DFT. Hence, a finite-temperature version

of spin-DFT involving only spin-up and spin-down den-
sities and thus only spin-flip excitations, is bound to fail
in predicting, e.g., the critical temperature [4].
The most fundamental steps toward both understand-

ing a functional and creating accurate approximations
are deriving its inequalities from the variational defini-
tion of the functional. These yield both the signs of en-
ergy contributions and, via uniform scaling of the spa-
tial coordinates, basic equalities and inequalities that
non-empirical functionals should satisfy by construction.
The adiabatic connection formula [18] is intimately re-
lated. Here, we (i) establish components of the fun-
damental functional needed for treating finite temper-
ature, (ii) prove the most basic properties (signs of the
energy contributions), (iii) show that the temperature
must be scaled simultaneously with the spatial coordi-
nate, (iv) derive the inequalities under such scaling, and
(v) give the adiabatic connection formula for finite tem-
perature. These results establish the basic rules for all
finite-temperature KS treatments.
Central to the thermodynamic description of many-

electron systems is the grand-canonical potential, defined
as the statistical average of the grand-canonical operator

Ω̂ = Ĥ − τŜ − µN̂, (1)

where Ĥ , Ŝ, N̂ , τ and µ are the Hamiltonian, entropy,
and particle-number operators, temperature and chemi-
cal potential, respectively. In detail, Ĥ = T̂ + V̂ee + V̂ ,
where T̂ and V̂ee are the kinetic energy and the Coulomb
electron-electron interaction operators, and V̂ represents
an external scalar potential v(r). The entropy operator
is given by Ŝ = − k ln Γ̂ , where k is the Boltzmann con-
stant and Γ̂ =

∑

N,iwN,i|ΨN,i〉〈ΨN,i| is a statistical oper-
ator, with |ΨN,i〉 and wN,i being orthonormal N -particle
states and statistical weights, respectively, with the latter
satisfying the (normalization) condition

∑

N,iwN,i = 1.

The statistical average of an operator Â is obtained as

A[Γ̂] = Tr {Γ̂Â} =
∑

N

∑

i

wN,i〈ΨN,i|Â|ΨN,i〉 . (2)
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The thermodynamical equilibrium properties of many-
electron systems are obtained from the knowledge
of the grand-canonical statistical operator Γ̂0 =
∑

N,iw
0
N,i|Ψ0

N,i〉〈Ψ0
N,i|, where |Ψ0

N,i〉 are the N -particle

eigenstates of Ĥ with energies E0
N,i, and the equi-

librium statistical weights are given by w0
N,i =

exp[−β(E0

N,i−µN)]
∑

N,i exp[−β(E0

N,i
−µN)]

, where β = 1
kτ [19]. The Gibbs

principle ensures that Γ̂0 minimizes the statistical aver-
age of the grand-potential operator. We emphasize that
Γ̂0 is unique [14] and that in the limit of zero tempera-
ture, for systems with degenerate ground states, it leads
to ensembles with equal statistical weights.
To create a DFT at finite temperature, Mermin [14]

rewrites this as (in modern parlance)

Ωτ
v−µ = min

n

{

F τ [n] +

∫

d3r n(r) (v(r) − µ)

}

(3)

where the minimizing n(r) is the equilibrium density
n0(r), and

F τ [n] := min
Γ̂→n

F τ [Γ̂] = min
Γ̂→n

{

T [Γ̂] + Vee[Γ̂]− τS[Γ̂]
}

,

(4)
is the finite-temperature analog of the universal
Hohenberg-Kohn functional, defined through a con-
strained search [19, 20]. This depends only on τ and
not on µ. We denote Γ̂τ [n] as the minimizing statistical
operator in Eq. (4), and define the density functionals:

T τ [n] := T [Γ̂τ [n]], V τ
ee[n] := Vee[Γ̂

τ [n]],

Sτ [n] := S[Γ̂τ [n]], (5)

i.e., each density functional is the trace of its operator
over the minimizing Γ̂ for the given τ and density.
Next consider a system of non-interacting electrons at

the same temperature τ , and denote its one-body poten-
tial as vS(r). All the previous arguments apply, and we
choose vS(r) to make its density match that of the in-
teracting problem. This defines the KS system at finite
temperature. Because it arises so often in this work, we
define the kentropy as

Kτ [Γ̂] := T [Γ̂]− τ S[Γ̂], (6)

and we show it plays an analogous role to the kinetic
energy in ground-state DFT, to which it reduces as τ →
0. The non-interacting functional is just

F τ
S
[n] := min

Γ̂→n
Kτ [Γ̂] = Kτ [Γ̂τ

S
[n]] (7)

from Eq. (4) applied without Vee, and we define:

T τ
S
[n] := T [Γ̂τ

S
[n]] , Sτ

S
[n] := S[Γ̂τ

S
[n]]. (8)

Next we define the difference functionals that are crucial
to the KS method. Write

V τ
ee,s

[n] := Vee[Γ̂
τ
S
[n]] = U τ [n] + Ωτ

X
[n] , (9)

where U τ [n] in terms of the density has the form of the
usual Hartree energy, and expressing Ωτ

X
[n] in terms of

the module square of the one-body density matrix stem-
ming from Γ̂τ

S
[n] [21] we observe that Ωτ

X
[n] ≤ 0.

The kinetic correlation is

T τ
C
[n] := T [Γ̂τ [n]]− T [Γ̂τ

S
[n]] , (10)

and similarly define Sτ
C
[n] and Kτ

C
[n], while the potential

contribution is

U τ
C
[n] := Vee[Γ̂

τ [n]]− Vee[Γ̂
τ
S
[n]]. (11)

The sum of the energy components is, as in ground-state
DFT, the correlation energy, Eτ

C
[n] := T τ

C
[n] + U τ

C
[n],

while the grand-canonical correlation potential is

Ωτ
C
[n] := Kτ

C
[n] + U τ

C
[n] = Eτ

C
[n]− τSτ

C
[n] , (12)

and Ωτ
XC
[n] := Ωτ

X
[n] + Ωτ

C
[n].

We now prove the most basic theorems about the signs
of our quantities. To show that the correlation-kentropy
(or kentropic correlation) is always positive, begin by
noting Kτ [Γ̂τ

S
[n]] ≤ Kτ [Γ̂τ [n]], because Γ̂τ

S
[n] minimizes

Kτ [Γ̂]. By inserting the definition, Eq. (6), we find
Kτ

C
[n] ≥ 0, with equality only when the interaction is

zero. It is the kentropic correlation that is guaranteed
to be positive, not the kinetic correlation alone, con-
trary to the pure ground-state case[22]. Similarly, since
F τ [Γ̂τ [n]] ≤ F τ [Γ̂τ

S
[n]], we find Ωτ

C
[n] ≤ 0. Combining

these results with Eq. (12) implies U τ
C
[n] ≤ 0. Thus

Ωτ
X
[n] ≤ 0, Ωτ

C
[n] ≤ 0, U τ

C
[n] ≤ 0, Kτ

C
[n] ≥ 0, (13)

and no approximation should violate these basic rules.
Some of the most important results in ground-state

DFT come from uniform scaling of the coordinates[22,
23]. In the following considerations, when we refer ex-
plicitly to wavefunctions, we shall restrict to wavefunc-
tions having finite norm on their entire domain of def-
inition. Under norm-preserving homogeneous scaling of
the coordinate r → γr, with γ > 0, to the scaled wave
function [22]

Ψγ(r1, ..., rN ) := γ
3

2
NΨ(γr1, ..., γrN ), (14)

corresponds the scaled density nγ(r) = γ3n(γr). Writ-
ing Ψγ(r1, ..., rN ) = 〈r1, ..., rN |Ψγ〉 in terms of the
(representation-free) element |Ψγ〉 of Hilbert space, the
scaled statistical operator is defined as

Γ̂γ :=
∑

N

∑

i

wN,i|Ψγ
N,i〉〈Ψ

γ
N,i| , (15)

where the statistical weights are hold fixed, i.e., the scal-
ing only acts on the states.
With the above definition, the statistical average of an

operator whose pure-state expectation value scales ho-
mogeneously [22], scales homogeneously as well. In par-
ticular, we have: T [Γ̂γ ] = γ2T [Γ̂], Vee[Γ̂γ ] = γVee[Γ̂],
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N [Γ̂γ ] = N [Γ̂], and S[Γ̂γ ] = S[Γ̂]. The scaling behavior
of the density functionals is, however, more subtle. First
consider the non-interacting functionals in some detail.
Because Γ̂τ

S
[n] minimizes Kτ , Eq. (7), and

Kτ [Γ̂γ ] = γ2

(

T [Γ̂]− τ

γ2
S[Γ̂]

)

= γ2Kτ/γ2

[Γ̂] , (16)

then

Γ̂τ
S
[nγ ] = Γ̂τ/γ2

S,γ [n] , F τ
S
[nγ ] = γ2 F

τ/γ2

S [n] . (17)

In particular we notice that

Sτ
s [nγ ] = Sτ/γ2

s [n] . (18)

For non-interacting electrons, the statistical operator at
a given temperature that is the minimizer for a given
scaled density is simply the scaled statistical operator,
but at a scaled temperature, an effect that is obviously
absent in the ground-state theory.
There are further simple implications. First, if we in-

vert the sense of Eq. (17), we can write:

F τ ′

S
[n] =

τ ′

τ
F τ

S
[n√

τ/τ ′
], (19)

i.e., knowledge of F τ
S
[n] at any one finite τ generates its

entire temperature dependence, via scaling. Furthermore,
it must always collapse to the ground-state KS kinetic
energy under scaling to the high-density limit:

TS[n] = lim
γ→∞

F τ
S
[nγ ]/γ

2. (20)

Similarly, in the low-density limit

S∞
S
[n] = − lim

γ→0
F τ

S
[nγ ]/τ, (21)

where S∞
S
[n] is the non-interacting KS entropy in the

high-temperature limit.
Next, we consider the interacting case. The exchange

contribution is much simpler than correlation, because
it is extracted from the one-particle density matrix. Be-
cause V

ee
[Γ̂] and U [Γ̂] scale linearly with γ, and using the

simple scaling relation for Γ̂S, Eq. (17),

Ωτ
X
[nγ ] = γ Ω

τ/γ2

X [n] . (22)

This scaling result is important in ground-state DFT,
where it restricts the dependence of the exchange-
enhancement factor to depending on just the reduced
density gradient [23]. But the more interesting case is
correlation. From the definition, Eq. (4),

F τ [nγ ] ≤ F τ [Γ̂τ ′

γ [n]] , (23)

since Γ̂τ ′

γ [n] has density nγ , and τ ′ is any temperature.
Using the scaling properties and choosing τ ′ = τ/γ2, then
the fundamental inequality of scaling is

Kτ [nγ ] + V τ
ee[nγ ] ≤ γ2 Kτ/γ2

[n] + γ V τ/γ2

ee [n]. (24)

To find a condition on the kentropy alone, define n′(r) =
nγ(r), γ

′ = 1/γ, and τ ′ = τ/γ2 in Eq. (24). Multiply
the result by γ′, and combine with Eq. (24), to find

Kτ [nγ ] ≤ γ2 Kτ/γ2

[n], γ ≥ 1 . (25)

This is the finite temperature analog of the subquadratic
scaling of the kinetic energy in the real system [22]. An-
other combination isolates the repulsive contributions:

V τ
ee[nγ ] ≥ γ V τ/γ2

ee [n], γ ≥ 1 . (26)

These inequalities loosely constrain the behavior of these
large energies. Much more important is to subtract out
KS quantities that scale simply, to find for γ ≥ 1:

Kτ
C
[nγ ] ≤ γ2 K

τ/γ2

C [n], U τ
C
[nγ ] ≥ γ U

τ/γ2

C [n]. (27)

One more application of Eq. (24) yields

Ωτ
C
[nγ ] ≥ γ Ω

τ/γ2

C [n], γ ≥ 1, (28)

the fundamental scaling inequality for the correlation
contribution to the grand canonical potential. The in-
equalities, Eqs. (25-28), which are reversed if γ < 1, pro-
vide tight constraints on these functionals and are rou-
tinely used in non-empirical functional construction in
the ground state[23]. For example, combining Eq. (22)
with Eq. (28) in the high-density limit, yields:

Ωτ
X
[n] = lim

γ→∞
Ωγ2τ

XC
[nγ ]/γ. (29)

This scaling procedure can usually be applied easily to
any approximate Ωτ

XC
[n] to extract its separate exchange

and correlation contributions.
Lastly, we consider the adiabatic coupling constant for

finite temperature, its relationship to scaling, and derive
the adiabatic connection formula. Define

F τ,λ[n] = min
Γ̂→n

{

T [Γ̂] + λVee[Γ̂]− τS[Γ̂]
}

, (30)

with Γ̂τ,λ[n] being the corresponding minimizing Γ̂. By
scaling, it is straightforward to show:

Γ̂τ,λ[n] = Γ̂
τ/λ2

λ [n1/λ] , F τ,λ[n] = λ2 F τ/λ2

[n1/λ] .
(31)

where quantities with one superscript are evaluated at
λ = 1. Eq. (31) is the interacting generalization of Eq.
(17) and shows that, even in the presence of interactions,
simple equalities are possible, but at the price of altering
the coupling constant. In particular we notice that

Sτ,λ[n] = Sτ/λ2

[n1/λ] . (32)

Of course, non-interacting functionals are not affected by
a coupling constant modification. Eq. (22) implies that
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the exchange and Hartree density functionals have a lin-
ear dependence on λ. Employing the minimization prop-
erty of Eq. (30) and the Hellmann-Feynman theorem, we
find

Ωτ
XC
[n] =

∫ 1

0

dλU τ
XC
[n](λ) , (33)

where

U τ
XC
[n](λ) = Vee[Γ̂

τ,λ[n]]− U τ [n] . (34)

Eq. (33) is the finite-temperature adiabatic connection
formula, whose zero-temperature limit played a cen-
tral role in ground-state DFT. U τ

XC
[n](0) = Ωτ

X
[n] < 0

(Eq.(13)), and the scaling inequalities can be combined,
analogously to Ref. [22], to show that U τ

XC
[n](λ) is mono-

tonically decreasing in λ.
So far, all results presented have been exact. To see

them in practice, consider the finite-temperature local
density approximation (LDA) to Ωτ

XC
[n]

ΩLDAτ
XC

[n] =

∫

d3r ωunifτ
XC

(n(r)) , (35)

where ωunifτ
XC

(n) is the XC grand canonical potential den-
sity of a uniform electron gas of density n. Because a
uniform electron gas is a quantum mechanical system,
its energies satisfy all our conditions, guaranteeing by
construction that LDA satisfies all the exact conditions
listed here. In the Jacob’s ladder of functional construc-
tion [17], more sophisticated approximations should also
satisfy these conditions. To give one simple example, Eq.
(22) implies

ωunifτ
X

(n(r)) = eunif
X

(n(r))FX(τ̃ (r)) , (36)

where eunif
X

(n(r)) = −AX n4/3(r), AX = (3/4π)(3π2)1/3,
and τ̃(r) = τ/n2/3(r) is a dimensionless measure of the
local temperature. Thus the largest fractional deviations
from ground-state results should occur (in LDA) in re-
gions of lowest density, but these contribute less in ab-
solute terms. For a generalized gradient approximation
(GGA), Eq. (22) implies

ωGGAτ
X

(n(r), |∇n|(r)) = eunif
X

(n(r))FX(s(r), τ̃ (r)), (37)

where the dimensionless gradient s is |∇n|/(2kFn) and
kF = (3π2n)1/3, i.e., the exchange enhancement factor
FX(s, τ̃ ) depends on the temperature only via τ̃ .
In summary, there is a present lack of approximate

density functionals for finite temperature. We have de-
rived many basic relations needed to construct such ap-
proximations, and expect future approximations to either
build these in, or be tested against them. In principle,
such approximations should already be implemented in
high-temperature DFT calculations, at least at the LDA
level, as a check that XC corrections due to finite tem-
perature do not alter calculated results. If they do, then

more accurate approximations than LDA will be needed
to account for them.
This work was supported by the Deutsche Forschungs-

gemeinschaft. C.R.P. was supported by the Euro-
pean Community through a Marie Curie IIF (Grant
No. MIF1-CT-2006-040222). S.P. acknowledges support
through DOE grant DE-FG02-05ER46203. K.B. was
supported through DOE grant DE-FG02-08ER46496.



5

∗ Electronic address: pittaliss@missouri.edu
† Present address: Centro Atómico Bariloche and Instituto
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