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The stationary points of the potential energy function V are studied for the φ4 model on a two-
dimensional square lattice with nearest-neighbor interactions. We employ two different numerical
methods to compute stationary points, and supplement the results by an analytical upper bound on
the potential energy of stationary points. On the basis of these results, we explore certain aspects
regarding the relation of stationary points to the occurrence of thermodynamic phase transitions.
We find that the phase transition potential energy of the φ4 model does in general not coincide with
the potential energy of any of the stationary points of V . This disproves earlier, allegedly rigorous,
claims in the literature on necessary conditions for the existence of phase transitions. Moreover,
we find evidence that the indices of stationary points scale extensively with the system size, and
therefore the index density can be used to characterize features of the energy landscape in the infinite
system limit. We conclude that the finite-system stationary points provide one possible mechanism
of how a phase transition can arise, but not the only one.
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The stationary points of the potential energy function
or other classical energy functions can be employed to
calculate or estimate physical quantities. Well-known ex-
amples include transition state theory or Kramers’s reac-
tion rate theory for the thermally activated escape from
metastable states, where the barrier height (correspond-
ing to the difference between potential energies at certain
stationary points of the potential energy function) plays
an essential role. More recently, a large variety of related
techniques has become popular under the name of energy
landscape methods [16], with applications to many-body
systems as diverse as metallic clusters, or biomolecules
and their folding transitions. While the mentioned ap-
plications focus mostly on the numerical investigation of
finite systems, the analysis of stationary points has also
proved useful for analytical studies of N -body systems
in the thermodynamic limit. One field of research where
such methods have been fruitfully applied is disordered
systems undergoing a dynamical glass transition [17].

Another line of research based on stationary points but
focusing on equilibrium phase transitions in the thermo-
dynamic limit N → ∞, dates back to about the same
time [18]. This approach, originally formulated in terms
of topology changes of configuration space submanifolds,
can be rephrased in terms of stationary points of the po-
tential energy function V , i.e. configuration space points
qs satisfying ∇V (qs) = 0. The underlying idea can be
understood as follows [19]: Thermodynamic equilibrium
properties are encoded in the thermodynamic limit value
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of the microcanonical configurational entropy

sN (v) =
1

N
ln

∫

Γ

δ[V (x)−Nv]dx =
1

N
ln

∫

Σv

dΣ

|∇V |
, (1)

where Γ denotes configuration space and dx its volume
measure, Σv ⊂ Γ is the hypersurface of constant poten-
tial energy V = Nv, and dΣ stands for the (N − 1)-
dimensional Hausdorff measure on Σv. At a stationary
point, we have ∇V = 0, the integrand on the righthand
side of (1) diverges, and we may expect the stationary
point to give an important contribution to the integral.
Indeed, it has been shown that, for finite N , every sta-
tionary point qs of V induces nonanalytic behavior in
sN (v) precisely at the potential energy of the stationary
point, v = V (qs)/N [20].
Nonanalyticities of thermodynamic functions are hall-

marks of phase transitions. Having observed that sta-
tionary points of V cause nonanalyticities in the finite-
system entropy sN , it seems natural to ask whether they
may also be responsible for nonanalytic behavior in the
infinite-system entropy, i.e., for the occurrence of phase
transitions. While for finite N every stationary point
of V induces a nonanalyticity in sN , the majority of
the nonanalyticities does not survive the thermodynamic
limit. Two questions turned out to be central to the un-
derstanding of these observations: (1) Under what con-
ditions can the nonanalytic behavior of sN , induced by a
stationary point of V , survive the thermodynamic limit?
A possible scenario has been depicted in [20, 21], and it
turns out that the Hessian determinant of the potential
energy function, evaluated at the stationary points, is
crucial for discriminating whether or not the stationary
points can induce a phase transition in the thermody-
namic limit. For some models this insight has proved
particularly useful in that it facilitates the analytic com-
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putation of phase transition energies even in the absence
of an exact thermodynamic solution [22]. (2) Are station-
ary points necessary for a phase transition to take place?
Or is there another mechanism, distinct from the one
sketched above, which can give rise to a phase transition?
This question was addressed by a theorem in [23], claim-
ing that, for a large class of systems with short-range
interactions, the presence of stationary point is indeed
necessary for a phase transition to occur.
The model study presented in this Letter puts this al-

leged relation of stationary points of the potential energy
function V and thermodynamic phase transitions to the
test: We apply three different methods to extract infor-
mation about the stationary points of the potential en-
ergy function of the two-dimensional nearest-neighbor φ4

model. This model is known to have a continuous phase
transition which is in the universality class of the two-
dimensional Ising model but, in contrast to that model,
is amenable to energy landscape methods by virtue of
its continuous configuration space. The results from two
complementary numerical techniques, as well as a rigor-
ous analytical upper bound, all evidence that stationary
points occur only at non-positive potential energies.
The implications of this finding are significant. Among

other things, they show by counterexample that the the-
orem on the relation between stationary points and ther-
modynamic phase transitions, allegedly proven in [23],
does not hold. Instead, we observe that, even for short-
range interacting systems, thermodynamic phase transi-
tions can occur at energies not related to any station-
ary points. As a consequence, further mechanisms of
how phase transitions arise, possibly not related to finite-
system stationary points, must exist, and we will com-
ment on possible scenarios towards the end of this Letter.
Two-dimensional nearest-neighbor φ4 model.—On a fi-

nite square lattice Λ ⊂ Z
2 consisting of N = L2 sites, a

real degree of freedom φi is assigned to each lattice site
i ∈ Λ. By N (i) we denote the subset of Λ consisting
of the four nearest-neighboring sites of i on the lattice
under the assumption of periodic boundary conditions.
The potential energy function of this model is given by

V (q) =
∑

i∈Λ

[

λ

4!
q4i −

µ2

2
q2i +

J

4

∑

j∈N (i)

(qi − qj)
2

]

, (2)

where q = (q1, . . . , qN) denotes a point in configuration
space Γ = R

N [24]. J > 0 determines the coupling
strength between nearest-neighboring sites and the pa-
rameters λ, µ > 0 characterize a local double-well poten-
tial experienced by each degree of freedom.
In the thermodynamic limit N → ∞ this model is

known to undergo, at some critical temperature Tc, a
continuous phase transition, in the sense that the con-
figurational canonical free energy f(T ) is nonanalytic at
T = Tc. The transition is from a “ferromagnetic” phase
with nonzero average particle displacement to a “param-
agnetic” phase with vanishing average displacement (see
[25] for more details as well as for Monte Carlo results).
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FIG. 1. (Color online) Monte Carlo results for the two-
dimensional φ4 model (2) with λ = 3/5, µ2 = 2, and J = 1.
System sizes N = L×L are plotted with L ranging from 32 to
128. Left panel: the canonical average 〈v〉 of the potential en-
ergy per lattice site as a function of the temperature T . Right
panel: The canonical specific heat c = (〈V 2〉 − 〈V 〉2)/(NT 2),
plotted as a function of 〈v〉. The lines between the data points
serve as a guide to the eye.

Instead of Tc, it is more adequate for our purposes to
compare to the critical potential energy per lattice site,
vc, of the transition. Both quantities are unambiguously
related to each other in the thermodynamic limit via the
caloric curve v(T ), independently of the statistical en-
semble used. The critical potential energy vc is less fre-
quently studied, in fact the only data we could find in
the literature are from Monte Carlo simulations of fairly
small system sizes N = 20 × 20 in [26], with parameter
values λ = 3/5, µ2 = 2, and J = 1. We mostly use the
same parameter values in the following. Since the value
of vc is a crucial benchmark when relating our stationary
point analysis to the phase transition of the φ4 model, we
have performed standard Metropolis Monte Carlo simu-
lations for somewhat larger system sizes up to 128× 128
and 107 lattice sweeps. We have sampled, among other
observables, the canonical average 〈v〉 of the potential en-
ergy per particle, and plots of some of the Monte Carlo
results are shown in Fig. 1. The quality of the data is
sufficient to establish, beyond any reasonable doubt, a
critical potential energy vc ≈ 2.2 well above zero.

Numerical continuation method.—For J = 0, i.e., in
the absence of coupling, the stationary points qs of the
potential V in (2) can be calculated analytically without
difficulty, obtaining the 3N solutions qs = (qs1, . . . , q

s
N )

with qsj ∈ {0,±
√

6µ2/λ}. Knowledge of these solutions
permits us to continue them to J > 0 by numerical con-
tinuation; see [27] for a description of the homotopy con-
tinuation method we have actually been using. Under
certain conditions on the initial (decoupled) and final
(coupled) potentials, this method is known to yield all
stationary points of V . However, since the number of
stationary points for J = 0 grows exponentially with the
number of lattice sites, such an analysis is restricted to
fairly small system sizes.

We have used the homotopy continuation method to
compute all stationary points of V for various values of
J and system sizes up to 4 × 4, and the results show
the following features. First, upon increasing the cou-
pling constant J , the number #(qs) of stationary points
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FIG. 2. (Color online) Numerical results from the homotopy
continuation method. Left panel: The number of stationary
points of V for N = 3×3, plotted logarithmically as a function
of the coupling J . Right panel: For all 10,288,973 stationary
points qs of a 4 × 4 lattice with J = 0.2, the scaled Hessian
determinant D = |detHV (qs)|1/N is shown vs. the stationary
value vs = V (qs)/N , demonstrating that vs ≤ 0 for all qs.

dramatically decreases from 3N for J = 0 to only 3 sta-
tionary points for larger J . This behavior is illustrated
for N = 3 × 3 in the left panel of Fig. 2. Second, the
stationary values vs = V (qs)/N , i.e., the potential en-
ergy per lattice site evaluated at a stationary point, is
found to be never larger than zero. This is illustrated for
N = 4× 4 in the right panel of Fig. 2.
Newton-Raphson method.—We use Monte Carlo dy-

namics in configuration space to generate a large set of
initial states, and apply the Newton-Raphson method to
these initial states to find stationary point of V . In con-
trast to the homotopy continuation method, there is in
general no way of knowing whether all stationary points
have been found. An advantage, however, is that the
Newton-Raphson method can be applied to system sizes
much larger than 4× 4.
We have used the routine newt from [28], a globally

convergent version of the Newton-Raphson method, to
compute stationary points of φ4 lattices of sizes up to
32 × 32. For small J , the number of stationary points
for such system sizes is huge and only a tiny fraction of
them can be tracked down. For sufficiently large J [29],
however, only three stationary points are found: the two
global minima qs = (qs1, . . . , q

s
N ) where all qsj =

√

6µ2/λ,

respectively −
√

6µ2/λ, and a stationary point of index
1 at qsj = 0 for all j. Moreover, we again find that all
stationary values obey vs ≤ 0.
Analytical upper bound on the stationary values.—The

stationary points of the potential V are the solutions of

∂V (q)

∂qk
=

λ

3!
q3k + (4J − µ2)qk − J

∑

j∈N (k)

qj = 0. (3)

Although it is not feasible to solve this set of N coupled
nonlinear equations explicitely, the potential energy at
a stationary point can be determined by rewriting the
potential (2) in the form

V (q) =
∑

i∈Λ

qi

[

λ

4!
q3i +

(

4J − µ2

2

)

qi −
J

2

∑

j∈N (i)

qj

]

. (4)

Then, substituting (3) into (4), we obtain the potential
energy at a stationary point qs = (q1, . . . , qN ),

V (qs) = −
λ

4!

∑

i∈Λ

q4i . (5)

Since λ ≥ 0, the potential energy per lattice site at any
stationary point is bounded above by zero,

vs = V (qs)/N ≤ 0. (6)

Comparison with earlier results.—Our findings, and
in particular the fact that the stationary values vs are
non-positive, disprove earlier results on the relation be-
tween thermodynamic phase transitions and stationary
points of V . These earlier results were phrased in terms
of topology changes of certain submanifolds in configu-
ration space, but with the help of Morse theory we can
rephrase all statements in terms of stationary points.
In 2004, Franzosi and Pettini announced, and allegedly

proved under some conditions on the potential V , a nec-
essary condition for a thermodynamic phase transition
to occur [23]. In the language of stationary points, their
claim can be phrased as follows: If there exists an interval
[a, b] such that, for all system sizes N larger than some
constant N0, the stationary values vs = V (qs)/N corre-
sponding to the stationary points qs of V all lie outside
that interval, then in the thermodynamic limit neither a
first- nor second-order thermodynamic phase transition
can occur at critical potential energies vc ∈ (a, b).
In short, stationary points in the vicinity of some vc

are claimed to be necessary for a phase transition at vc.
The nearest-neighbor φ4 potential (2) satisfies all require-
ments on V demanded by this theorem. Accordingly,
based on the fact that all stationary values are nonpos-
itive (6), the theorem asserts that the critical potential
energy of the second-order phase transition of the model
cannot be positive. This prediction is in contradiction
to the thermodynamic properties of the model and the
theorem in [23] is falsified by means of a counterexample.
A numerical study of the configuration space topol-

ogy of the two-dimensional nearest-neighbor φ4 model
was published by Franzosi et al. in [30]. The authors
reported results for the Euler characteristic χ (a topo-
logical invariant) of the constant-potential energy shells
in configuration space, finding a pronounced kink of χ
as a function of v in the vicinity of the transition energy
(Fig. 3 of [30]). From the absence of stationary points
at positive energies, Morse theory allows one to conclude
that χ(v) is rigorously constant for v > 0. The kink
observed in Fig. 3 of [30] is therefore an artefact of the
numerical method used.
More on the shape of the energy landscape.—Contrary

to the claims in [23, 30], we have seen that the energy
landscape in the vicinity of the critical potential energy
vc of a phase transition can be locally trivial, i.e., free of
stationary points with potential energies vs in the vicin-
ity of vc. For v < 0 and large system sizes, however,
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FIG. 3. (Color online) Left panel: The relative index i of the
stationary point qs = (0, . . . , 0), plotted as a function of the

linear system size L =
√
N for various couplings J . From top

to bottom: J = 0.1, 0.36, 0.5, 0.64, 1, 2, 10. Right panel:
The large-system limit i∞ of the relative index, plotted as a
function of the coupling constant J .

when stationary points abound, it is more difficult to ex-
plore the shape of the energy landscape. As a first step
towards this aim, we study the properties of the station-
ary point qs = (0, . . . , 0), corresponding to the largest
stationary value vs = 0. Its index I, i.e., the number of
negative eigenvalues of the Hessian matrix of V evaluated
at qs, characterizes the change of the constant-energy
shell around v = 0. With increasing system size N , we
observe that the relative index i = I/N converges to a
finite value, and this value i∞ = limN→∞ i/N depends
on the coupling J (see Fig. 3). The existence of such
a limiting value is a good starting point for discussing
the properties of the potential energy landscape in the
infinite system limit. In fact, we can deduce that the
potential energy landscape does not approach a simple
N -dimensional generalization of a double-well potential
in the large-system limit, as one might naively have ex-
pected: Such a double-well, having two degenerate min-
ima at the ground state energy and a stationary point
of index I = 1 at v = 0, would yield i∞ = 0 for the
stationary point qs = (0, . . . , 0).

Conclusions.—By analytical and numerical methods,
we have probed certain features of the potential en-
ergy landscape of the two-dimensional φ4 lattice model.
The model’s phase transition was found to occur at en-

ergies well separated from the stationary values vs =
V (qs)/N of the potential V (or, equivalently, from topol-
ogy changes in configuration space). These findings fal-
sify a theorem put forward in [23] which claims that sta-
tionary points qs with stationary values vs = vc are neces-
sary for a phase transition to occur at a critical potential
energy vc. Since our results imply that the constant-
potential energy shells are simply-connected for v ≥ 0,
the symmetry breaking phase transition is found to be
driven by a concentration-of-measure effect, but is not re-
lated to the connectivity of the underlying finite-system
energy shells. In other words, even if the integral on the
right hand side of (1) depends smoothly on v, the limit-
ing procedure N → ∞ can, contrary to the claim in [23],
destroy this smoothness.
Accordingly, we conclude that the finite-system sta-

tionary points provide one possible mechanism of how
a phase transition can arise, but not the only one. If
the stationary points are at the basis of the transition,
the earlier mentioned criterion [20, 21] based on the Hes-
sian determinant at stationary points remains valid and
can be applied to analyze the phase transition. However,
other scenarios are possible and open up interesting per-
spectives. One possibility is that, even if V has no sta-
tionary points when considered on configuration space, it
might have such points when treated as a function of N
complex variables. If some of these stationary points, in
the thermodynamic limit, approach the real axis and sat-
isfy the Hessian determinant criterion at the same time,
they should be capable of inducing a phase transition,
despite the absence of stationary points in the real (non-
complex) configuration space. This and other alternative
scenarios could open up possibilities for deriving new cri-
teria on the existence or absence of phase transitions,
as well as for analytic methods for computing transition
energies.
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