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Abstract

Simulations are used to investigate by the first time the anisotropy of the dielectric response and the

effects of an applied electric field Eex on the phase diagram of water. In the presence of electric fields

ice II disappears from the phase diagram. When Eex is applied in the direction perpendicular to

the ac crystallographic plane the melting temperatures of ices III and V increase whereas that of ice

Ih is hardly affected. Ice III also disappears as a stable phase when Eex is applied in the direction

perpendicular to the ab plane. Eex increases by a small amount the critical temperature and reduces

slightly the temperature of the maximum density of liquid water. The presence Eex modifies all phase

transitions of water but its effect on solid-solid and solid-fluid transitions seems to be more important

and different depending on the direction of Eex.

Applied electric fields, Eex, modify the properties of
all phases of matter but to different extents and, hence,
can change the location of phase transitions. The phase
diagram of water exhibits a large number of polymorphs.
Thus, there is significant interest in exploring the effects
of Eex on the properties of water’s condensed phases and
on its phase diagram. Attempts have been made to de-
termine whether Eex affects the melting point of ice Ih
[1]. Also, the effects of Eex on the structural properties of
liquid water and on gas-to-particle nucleation rates have
been investigated [2, 3], while recently it has been shown
that |Eex| ≤ 0.3 V/nm leads to relatively small changes
for water’s vapor–liquid phase envelope [4]. Theoreti-
cally it is known that an external field stabilizes phases
with high dielectric constant. Since solid phases are gen-
erally anisotropic, the relative stabilization will depend
on the magnitude and on the orientation of Eex with re-
spect to the crystal. However, the dielectric constant has
been measured only for a limited set of state points for
some solid phases of water, either experimentally [5] or
from simulation [6, 7] and very little is known as to the
anisotropy of its dielectric response [8].

Here, we present a simulation study of the dielectric
constant tensor for several solid phases and the effects
of Eex on the phase diagram of water, described by the
non-polarizable TIP4P/2005 model [9]. We show that
electric fields exhibit a dramatic effect for boundaries be-
tween ordered/disordered phases. Particularly, we find
that for Eex > 0, ice II, an ordered phase, is destabi-
lized to the point of completely vanishing from the phase
diagram. Eex applied along the axis of smallest dielec-
tric response further washes out ice III from the phase
diagram. It should be recognized that a non-polarizable
model with its effective dipole moment µeff , cannot quan-
titatively represent the dielectric properties over a wide
range of state points. However, we have shown that the
dielectric constants of ices can be reproduced reasonably
well when the calculated polarization factor, Gpol, for the

TIP4P/2005 model is scaled to account for the difference
between the accurate average molecular dipole moment,
µacc, in a given phase and µeff of the model [10, 11]. This
scaling approach is also used here for the determination
of the phase boundaries.

For |Eex| > 0, the dipolar water molecules tend to align
with the field direction. For liquid and vapor phases,
molecules can re-orient without encountering large bar-
riers, but the situation is different for solid phases. Ices
can be divided in to proton-ordered (II, VIII ...) and
proton-disordered phases (Ih, III, V, VI ...). Molec-
ular re-orientation is not permitted for proton-ordered
phases, whereas the extent of the re-orientation depends
on the crystalline structure and thermodynamic state
for proton-disordered phases. The relaxation times in
proton-disordered structures can be very long (µs) and
for this reason it is necessary to bias the simulations (by
introducing Monte Carlo moves that sample efficiently
the proton re-arrangement) to determine the response of
the system under a perturbation such as Eex. We have
implemented a rotational loop algorithm [6, 12]. Un-
der the presence of a homogeneous static electric field,
E, changes in the internal energy U (K + Vinter) can be
written as [13]:

dU = T dS − p dV +E dM+ µ dN (1)

where M is the total dipole moment of the system. The
value of the electric field E is in general different from the
applied external field Eex due to the additional field gen-
erated by the polarized surface of the cavity [14] which
depends on its geometry and the anisotropy of the di-
electric constant [11]. Following Alberty [13] let us define
GE = G − E·M and HE = H − E·M that are related
through ∂(GE/T )/∂(1/T ) = HE . Phase transitions at
constant Eex, T and p require that both phases have
the same µ = GE/N . From a microscopic point of view
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FIG. 1. (Color online) Polarization (P ) as function of E
for the liquid phase (open diamonds and solid line) and the
ice Ih phase (open circles and solid line) computed for the
TIP4P/2005 model at 250 K and 1 bar. The corresponding
values obtained by scaling the magnitude of the molecular
dipole moment are indicated by filled symbols and dashed
lines. For ice Ih the applied field was on the direction perpen-
dicular to the ac plane and P stands for P⊥ac.

GE = −kT ln(Q′) with Q′:

Q′ ∝

∫
exp(−β(Vinter+pV −MEex+Upol))dr

NdV (2)

When Ewald sums are used (as done in this work) Vinter

includes the real and reciprocal space contributions to
the Coulombic energy of the system. The term Upol is
the interaction energy of the system with the polarized
surface [14]. Here we shall assume a spherical sample
(formed by many simulation boxes) under conducting pe-
riodic boundary conditions so that Upol vanishes and E

and Eex become identical [14]. Differentiating GE with
respect to Eex yields − < M > , and its integral allows
one to evaluate how GE changes under the influence of a
field as follows

GE(Eex)−GE(0) = −

∫ Eex

E=0

< M‖ >N,p,T,Eex
dEex (3)

The integrand of equation (3) (i.e., the polarization in
the direction of the applied electric field) is easily ob-
tained by performing NpT simulations at different val-
ues of Eex, and GE(0) has been determined by Abascal
and Vega for the phase diagram of the TIP4P/2005 wa-
ter model [9]. Once GE(Eex) has been computed for
a specific reference state of each phase, thermodynamic
integration in p, T space can be used to locate a point
where two phases coexist. After that Gibbs–Duhem in-
tegration [15] is used to trace the coexistence line. Sim-
ulation details for the solid-phase simulations (constant-
stress ensemble, system size, types of moves) follow those
described in our previous work [10, 11].
The polarization response of liquid water and ice Ih to

E is illustrated in Fig. 1. For E < 0.1 V/nm, the polar-
ization response is linear for both phases, but the slope is

phase p T ǫxx ǫyy ǫzz
(bar) (K) LR Fluc LR Fluc LR Fluc

L 1 250 588 563 – – – –

Ih 1 243 497 532 – 532 – 532

II 3016 180 213 – – – – –

III 2800 243 7510 8015 779 8411 48 155

V 5300 180 7910 7525 1189 16137 568 7113

VI 11000 260 8310 – – – 428 –

VI 11000 243 – 10240 – 11536 – 4110

TABLE I. Dielectric constants obtained for the TIP4P/2005
model from equilibrium fluctuations [10] (Fluc) at Eex = 0
and from linear response (LR). For ices III and VI the labo-
ratory frame defining x, y and z is chosen in the direction of
the unit cell vectors a, b, and c [16]. For ices Ih and II, x and z
are located along a and c; y is chosen in the direction perpen-
dicular to the ac plane (ice II was described with an hexagonal
unit cell instead of the trigonal one). With this choice of the
laboratory frame the susceptibility tensor is diagonal. For ice
V, the x and y axes are located along the a and b vectors and
z is perpendicular to the ab plane. The subscripts indicate
the statistical uncertainty. Using dipole scaling, the ǫ values
increase by (2.66/2.305)2 and (3.32/2.305)2 for the liquid and
solid phases, respectively.

somewhat larger for the liquid phase. For E > 0.1 V/nm,
the polarization response is not linear. Let us define the
degree of saturation as SM = 〈M〉/(Nµeff). For liquid
water values close to unity are obtained for SM at high E

as the molecules are free to orient their dipoles with the
field direction. For ice Ih, however, SM reaches a limit
of ≈ 0.58 at high E because the geometric constraints of
the solid structure of ice Ih prevent complete saturation.
For small E, the polarization of the system P = M/V

is related to the field strength through the expression
P = χE, where χ is the susceptibility tensor given by
ǫ − I with ǫ and I being the dielectric constant tensor
and the identity matrix [16]. In computer simulations
the dielectric constant tensor can be determined either
by analyzing the fluctuations of the system dipole [6, 10,
11, 17] or through the polarization response of the system
[18]. In this work, we have used the the latter method
and applied E in different crystallographic directions to
resolve the anisotropy of the dielectric constant tensor. A
comparison with literature data (see Table I) shows good
agreement between the two computational approaches.
The dielectric constant tensor exhibits significant

anisotropy for ices III, V, and VI. The TIP4P/2005model
under predicts the dielectric constants of liquid and solid
phases by about 25%. However, it predicts correctly
the polarization factor, Gpol = 〈M2〉/Nµ2, which con-
tains information about the orientational structure of wa-
ter, and the underestimation of the dielectric constant is
due to µeff = 2.305 D for this model being too small.
First principles studies indicate that the average dipole
moment of water molecules in the condensed phases is
≈ 2.7 D for liquid water and ≈ 3.3 D for ice Ih [19, 20].
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FIG. 2. (Color online) Phase diagram for the TIP4P/2005 wa-
ter model. Dotted black, dashed blue, solid magenta, dashed
red and solid green lines indicate the phase boundaries for
Eex = 0, Eex⊥ac = 0.3 V/nm with µeff , Eex⊥ac = 0.3 V/nm
and dipole scaling using 2.66 and 3.32 D for the liquid
and crystalline phases, Eex⊥ab = 0.3 V/nm with µeff and
Eex⊥ab = 0.3 V/nm and dipole scaling, respectively.

Thus, the TIP4P/2005 model is capable of predicting
qualitatively the effects of Eex on the phase boundaries,
but for quantitative predictions a scaling of the dipole
moment to an accurate value µacc is needed.

For Eex > 0, GE is lower than for Eex = 0 (see
Eq.(3)), and the extent of the reduction is proportional to
< M‖ >. Therefore, when Eex > 0, the phase with higher
ǫ will become more stable (larger reduction in GE). Since
the dielectric constant is a tensor the effect of an elec-
tric field will depend on its direction with respect to the
crystal. For ice Ih, the three components are about equal,
whereas ǫ for the other ice polymorphs is anisotropic (see
Table I). To study the effect of Eex on the phase diagram
of water, we have chosen to apply Eex in the direction
perpendicular to the ac plane (i.e Eex⊥ac) for crystalline
phases (c.f. caption to Table I for details) because ǫyy is
larger than the other components, and this field direction
allows for the maximum reduction in GE for a given field
strength. We assume that one studies a single crystal
with a well defined orientation with respect to the field.
For a polycrystalline sample, the orientations of the mi-
cro crystals with respect to Eex would be random, i.e.,
leading to broadening of the melting temperature.

A comparison of the phase diagrams computed for the
TIP4P/2005 water model at Eex⊥ac = 0.3 V/nm with
and without dipole scaling and that in the absence of a
field is shown in Fig. 2. Our choice of field strength is
motivated by previous findings indicating that high fields
are needed for statistically significant shifts in the phase
boundaries [4]. A field strength of 0.3 V/nm significantly
exceeds the dielectric breakdown strength of bulk water
samples, but is only three times larger than the 0.1 V/nm
reached recently in microfluidic channels [21]. For the
TIP4P/2005 model the electric field removes ice II from
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FIG. 3. (Color online) Vapor–liquid coexistence curve (left)
and temperature dependence of the liquid density (right) for
the TIP4P/2005 model at Eex = 0.3 V/nm (blue circles and
solid lines) and in the absence of a field (black squares and
dashed lines). The blue stars and black crosses denote the
corresponding critical points and temperatures of maximum
density.

the phase diagram and shifts the melting temperature of
ice Ih down by about 10 K to lower temperatures. It is
more interesting to analyze the behavior of TIP4P/2005
when using dipole scaling, since then dielectric constants
of condensed phases are reproduced reasonably well [10]
so that the predictions of the model should be closer to
what is expected to occur in the experiment. With the
dipole scaling ice II again disappears from the phase di-
agram, ice V increases significantly its stability range,
the melting point of ices III and V increase by about
15 K and the melting point of ice Ih is hardly affected by
the field. This last prediction is consistent with experi-
mental results at lower fields [1]. The key to understand
these changes is to realize that phases with high dielectric
constant increase their stability at the expense of phases
with lower dielectric constant. The melting line of ice Ih
at Eex⊥ac = 0.3 V/nm closely traces that found without
a field. The reason is that the scaled polarization curves
are quite similar for liquid water and ice Ih up to this
field strength (see Fig.1).

The principal effect of Eex⊥ac is the displacement of
the phase boundaries. The slopes of the phase transitions
are not much affected by the field. The only exception is
the change of slope of the V—VI transition from positive
to negative values. This is a consequence of the lower
enthalpy of ice V with respect to ice VI in the presence
of the field. Another interesting result is obtained when
the Eex is applied perpendicular to the ab plane (Fig. 2).
Now besides ice II, ice III also disappears from the phase
diagram because of its very small value of ǫzz value.

Let us now focus on the effect of the field on fluid
phases. Here, we have also studied the influence of
Eex = 0.3 V/nm on the vapor–liquid coexistence curve
(VLCC) for the TIP4P/2005 model (without dipole scal-



ing). Gibbs ensemble Monte Carlo [22] simulations were
carried out to compute the VLCC, and the simulation
and analysis details follow those used previously for the
TIP4P model [4]. The VLCC exhibits a small increase in
liquid density and small decrease in vapor density in the
presence of the field (see Fig. 3). The critical tempera-
ture is increased from 643±1 to 648±1 K, the critical den-
sity is reduced from 0.309±0.004 to 0.307±0.003 g/cm3,
and the normal boiling temperature is increased from
398.5±0.6 to 399.2±0.7 K. The relatively small extent of
these shifts agrees well with results for the TIP4P model
[4]. One of the fingerprint properties of water is the ex-
istence of a density maximum occurring at Tmd = 277 K
(at 1 bar). Here, we find that Tmd shifts downward to
272 K for Eex = 0.3 V/nm (see Fig.3). The preferential
alignment of the water molecules with the field direction
leads to a slight decrease in the tetrahedral order [4] and
an increase in the density especially for T < 300 K.

In conclusion, efficient simulation algorithms have been
used to investigated the effect of Eex on the phase behav-
ior of the TIP4P/2005 water model. Dielectric constants
obtained from the linear response region are found to be
in good agreement with those obtained from fluctuations.
The dielectric constants of ices III, V, and VI are highly
anisotropic, but this is not the case for ice Ih. With dipole
scaling (correcting for the underestimation of µ by the
non-polarizable TIP4P/2005 model), the dielectric con-
stants for the condensed phases are in satisfactory agree-
ment with experiment [10]. For anisotropic crystalline
phases, the changes in properties depend on the field
direction, and we have focused on Eex⊥ac = 0.3 V/nm
applied in the direction of the largest diagonal element
of the dielectric constant tensor. The main result of this
work is the prediction that ice II disappears from the
phase diagram, ice V increases significantly its region of
stability, the melting temperatures of ices III and V in-
creases by about 15 K and the melting point of ice Ih
is hardly affected by Eex. Ice III also disappears when
the electric field is applied perpendicular to the ab plane.
For fluid phases at Eex = 0.3 V/nm, the vapor–liquid co-
existence curve is shifted slightly to higher temperatures
(Tc increases by 5 K) and Tmd is shifted downward by the
same extent. The structure of cubic ice (Ic) allows for full
saturation (SM = 1) [2] and we observe that ice Ic be-
comes more stable than ice Ih forEex > 0.15 V/nm at low
pressure (withouth dipole scaling) for the TIP4P/2005
model. Thus, a transformation of ice Ih to Ic is not ex-
pected at field strength that are experimentally accessible
for bulk samples (the dielectric breakdown of bulk water
occurs at about 0.01 V/nm [1]). The results of this work
support the hypotheses that only very small changes in
phase transitions should be expected in the experiments,
with the exception of the disappearance of ice II which
could indeed be experimentally accesible.
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