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Abstract
We study the transverse momentum dependent factorization for single spin asymmetries in Drell-

Yan and semi-inclusive deep inelastic scattering processes at one-loop order. The next-to-leading

order hard factors are calculated in the Ji-Ma-Yuan factorization scheme. We further derive the

QCD resummation formalisms for these observables following the Collins-Soper-Sterman method.

The results are expressed in terms of the collinear correlation functions from initial and/or final

state hadrons coupled with the Sudakov form factor containing all order soft-gluon resummation

effects. The scheme independent coefficients are calculated up to one-loop order.

1



Single transverse spin asymmetry in hadronic reactions have attracted great attentions
from both experiment and theory sides in recent years. It promises strong connection to the
three-dimensional partonic tomography of the nucleon, and provides unique opportunities
to study QCD dynamics, such as the factorization and universality of parton distributions.
In particular, the short distance partonic interactions resulting into different Wilson lines
in the relevant transverse momentum dependent (TMD) parton distributions between the
Drell-Yan lepton pair production in pp collisions and the semi-inclusive hadron production in
deep inelastic scattering (SIDIS) predicts opposite signs for the Sivers-type single transverse
spin asymmetries in these two processes [1, 2]. This nontrivial universality prediction has
stimulated strong interests around the world to measure, especially, the SSA in the Drell-Yan
(DY) process, since that in the SIDIS has been observed in various experiments [3].

However, the numerical predictions for the SSAs in these processes are all based on
a leading order naive TMD factorization [4]. Although a general TMD factorization has
been argued for these processes [5–9], we need to know the next-to-leading-order (NLO)
perburbative QCD corrections to have more reliable predictions, which have not yet been
calculated. Another important issue is the energy dependence. Current DIS experiments
cover the Q2 range about 2-5GeV2, whereas the planned DY process will be measured at
relative larger Q2 about 20-25GeV2. Here, Q represents the large momentum scale, i.e.,
the virtuality of the photon in these processes. To accurately describe the Q2 evolution of
the transverse momentum dependent observables, the QCD resummation effects have to be
taken into account [6].

In this paper, we will build a theoretical framework to address these important ques-
tions. We carry out, at the first time, the complete NLO perturbative correction to the
single transverse spin dependent cross sections in DY and SIDIS processes in the TMD fac-
torization. One of the important implications of the explicit one-loop calculations is to help
to construct the correct resummation formalism for the SSA observables. Earlier attempts
to formulate these effects in SSAs have been made in various forms [10, 11]. A resummation
formula close to ours was used in Ref. [10], and a significant suppression effect were found
when Q2 is very large. In the following, based on the one-loop calculation results, we will
derive the complete soft gluon resummation formalism following the Collins-Soper-Sterman
(CSS) method [6], which can be easily implemented in the phenomenological studies.

We take the DY process as an example to demonstrate our procedure and present the
main results,

A(PA, S⊥) +B(PB) → γ∗(q) +X → ℓ+ + ℓ− +X, (1)

where PA and PB represent the momenta of hadrons A and B, and S⊥ for the transverse
polarization vector of A, respectively. The single transverse spin dependent differential cross
section can be expressed as

d∆σ(S⊥)

dydQ2d2q⊥
= σ0ǫ

αβSα
⊥
W β

UT (Q; q⊥) , (2)

where q⊥ and y are transverse momentum and rapidity of the lepton pair, σ0 = 4πα2
em/3NcsQ

2

with s = (PA + PB)
2, and ǫαβ is defined as ǫαβµνPAµPBν/PA · PB. At low transverse mo-

mentum (q⊥ ≪ Q) the structure function WUT can be formulated in terms of the TMD
factorization where the quark Sivers function is involved [1, 2], whereas at large transverse
momentum (q⊥ ≫ ΛQCD ) it can be calculated in the collinear factorization approach in
terms of the twist-three quark-gluon-quark correlation functions [12–14]. It has been shown
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that the TMD and collinear twist-three approaches give the consistent results in the inter-
mediate transverse momentum region: ΛQCD ≪ q⊥ ≪ Q [14, 15]. This consistency allows
us to separate WUT into two terms [6],

W α
UT (Q; q⊥) =

∫
d2b

(2π)2
ei~q⊥·~bW̃ α

UT (Q; b) + Y α
UT (Q; q⊥) ,

where the first term dominates at q⊥ ≪ Q region, and the second term at q⊥ ∼ Q. The
latter is obtained by subtracting the low q⊥ expansion from the full perturbative calculation.

According to the TMD factorization, we have [7, 11],

W̃ α
UT (Q; b) = f̃

(⊥α)
1T (z1, b, ζ1)q̄(z2, b, ζ2)

×HUT (Q) (S(b, ρ))−1 , (3)

where z1,2 = Q/
√
se±y and the sums over flavor weighting with the charge squared of the

quarks are implicit, f⊥

1T and q̄ are the TMD quark Sivers function of A and antiquark
distribution of B, H and S are hard and soft factors, respectively. In this paper, we follow
the Ji-Ma-Yuan factorization scheme [7], where two off-light-front Wilson lines (along off-
light-front vectors v1 and v2) are introduced to regulate the light-cone singularities for the
TMD quark distributions. We further define ζ21 = 4(v1 · PA)

2/v21 and ζ22 = 4(v2 · PB)
2/v22,

and the rapidity cut-off parameter ρ: z21ζ
2
1 = z22ζ

2
2 = ρQ2. The Sivers function in the impact

parameter b⊥-space is defined as f̃
(⊥α)
1T (x, b⊥) =

∫
d2k⊥e

−i~k⊥·~b⊥kα
⊥
f
⊥(DY)
1T (x, k⊥)/MP , where

f⊥

1T follows the definition of Ref. [16]. Our results can be translated to other factorization
schemes where different regularizations for the light-cone singularities are used [9].

We investigate the above factorization formula Eq. (3) in the perturbative region of
1/b⊥ ≫ ΛQCD. The explicit calculations at one-loop order will verify the TMD factorization,
from which we obtain the NLO correction to the hard factor. In the calculation of the
spin-average (or double spin asymmetry) TMD factorization, it is convenient to choose a
quark (or gluon) target, where every factor in the factorization formula can be calculated
perturbatively [7]. However, the SSA vanishes with on-shell quark. To get nonzero effect,
we have to go beyond the simple quark target picture.

Our calculations are based on the collinear correlation functions from the incoming
hadrons. In this framework, the SSA is naturally a twist-three effect, and involves the
twist-three quark-gluon-quark correlation function from the polarized nucleon [12, 13]. In
particular, the transverse spin-dependent Qiu-Sterman matrix element TF (x1, x2) [13] is re-
sponsible for the SSA in the process of (1), and is related to the quark Sivers function:

TF (x, x) =
∫
d2k⊥|k2

⊥
|f⊥(DY)

1T (x, k⊥)/MP [14, 17]. There have been great theoretical devel-
opments in this framework in recent years, see, e.g., Refs. [14, 17–20]. We will utilize these

techniques to compute the structure function W̃ α
UT (Q, b). First, let us write down a general

form,

W̃ α
UT (Q, b) =

(−ibα
⊥

2

)∫
dx1dx2dx

′

x1x2x′
TF (x1, x2)q̄(x

′)

×H(x1, x2, x
′;Q, b) , (4)

where TF follows the definition of Ref. [17] and q̄(x′) is the integrated anti-quark distribution.
Other twist-three quark-gluon-quark correlation functions contributing to the SSA can be
included as well. For simplicity, we focus on TF contributions in this paper, including both
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˜W α
UT (b) =

∫
d2q⊥e

−i~q⊥·~b⊥
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FIG. 1. Generic Feynman diagram contribution to the impact parameter space structure function

W̃UT (Q, b).

soft-gluon-pole and hard-gluon-pole contributions. The soft-fermion-pole contributions can
be included accordingly.

The above formula is similar to that of the q⊥-weighted asymmetry in the same process
calculated in Ref. [17]. There are two major differences: (1) instead of weighting with qα

⊥
,

here we weight with e−i~q⊥·~b⊥; (2) we will restrict our calculations of the differential cross
section in the TMD domain, i.e., q⊥ ≪ Q (1/b⊥ ≪ Q). We calculate Eq.(4) in a covariant
gauge, where a generic diagram is illustrated in Fig. 1. Because of the twist-three effect,
an additional gluon attachment has to be taken into account for hard partonic scattering
amplitude. A collinear expansion will be performed to calculate the hard part H(Q, b).
In particular, the amplitude is expanded in terms of kα

g⊥ = kα
2⊥ − kα

1⊥ where ki⊥ ≪ 1/b⊥.
Combining this expansion with matrix element from the polarized nucleon, it will lead to
the spin dependent cross section expressed in terms of TF (x1, x2).

The leading order diagrams are shown in Fig. 2(a) and (b). From the kinematics, we
find that q⊥ is related to the transverse momenta of the two quark lines as: q⊥ = k2⊥ for
Fig. 2(a) and q⊥ = k1⊥ for Fig. 2(b). Therefore, the contributions from these two diagrams
will be

Fig.2 =

∫
d2q⊥e

−i~q⊥·~b⊥

(
ig

−(k+
2 − k+

1 )− iǫ

)

× [δ(q⊥ − k2⊥)− δ(q⊥ − k1⊥)]

=

(
ig

−(k+
2 − k+

1 )− iǫ

)[
e−i~k2⊥·~b⊥ − e−i~k1⊥·~b⊥

]

=
ig

−(k+
2 − k+

1 )− iǫ
(−ibα

⊥
) kα

g⊥ , (5)

where the last equation comes from the collinear expansion of the exponential factor. The
initial state interactions represented by the propagator leads to a pole contribution. After
taking the pole, we will obtain the leading order contribution,

W̃
α(0)
UT (Q, b) =

(−ibα
⊥

2

)
TF (z1, z1)q̄(z2) . (6)

This also normalizes the leading order hard factor as H
(0)
UT = 1 in Eq. (3), because

f
⊥α(DY)
1T (z1, b⊥) = TF (z1, z1)(−ibα

⊥
/2) at this order at small b⊥.

Order αs corrections come from real and virtual gluon radiation contributions. Similar
to that calculated in Ref. [17], the virtual diagrams contain soft and collinear divergences.
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FIG. 2. Leading order Born diagram calculation of W̃UT (Q, b).

The soft divergence will be cancelled out by the real gluon radiation contributions, and
the collinear divergences will be absorbed into the parton distributions in both TMD and
collinear factorizations in Eqs. (3) and (4). The real diagrams are similar to those calculated

in Refs. [14, 17]. In order to obtain their contributions to W̃ α
UT (b⊥), we need to first take

the low transverse momentum limit, and then Fourier transform into the impact parameter
b⊥-space. After summing up both real and virtual diagrams contributions, we indeed find
that the soft divergences cancel out between each other, and the total contribution only
contains the collinear divergences,

αs

2π

(−ibα
⊥

2

){[
−1

ǫ
+ ln

4

b2µ2
e−2γE

] (
Pq/q ⊗ q̄(z′2)

+ PT
qg→qg ⊗ TF (z

′

1, z
′′

1 )
)
+ CF (1− ξ2)δ(1− ξ1)

+

(
− 1

2Nc

)
(1− ξ1)δ(1− ξ2) + δ(1− ξ1)δ(1− ξ2)

×CF

[
− ln2

(
Q2b2

4
e2γE−

3

2

)
− 23

4
+ π2

]}
, (7)

where ξi = zi/z
′

i, Pqq is the quark splitting function, and PT
qg→qg the splitting function for

the Qiu-Sterman matrix element. Our calculations provide an important cross check for this
splitting kernel [17, 20]. We will present the detailed comparison with previous calculations
in a separate publication. After subtracting the collinear divergences from the splitting of
TF and q̄, we demonstrate the factorization form in Eq. (4) up to one-loop order.

The above result can also be casted into the TMD factorization formula Eq. (3), where
we have to subtract the TMD quark Sivers function, antiquark distribution and the soft
factor. The latter two have been calculated before [7]. The quark Sivers function can be
calculated similarly, and we find that,

f̃α
1T (z1, b⊥) =

αs

2π

(−ibα
⊥

2

){[
−1

ǫ
+ ln

4

b2µ2
e−2γE

]

×PT
qg→qg ⊗ TF (z

′

1, , z
′′

1 ) + δ(1− ξ1)CF[
−3

2
ln

4

b2µ2
e−2γE −1

2
ln2

(
z21ζ

2
1b

2

4
e2γE−1

)
− 3 + π2

2

]

+

(
− 1

2Nc

)
(1− ξ1)

}
. (8)

After subtracting these factors out, we find that the hard factor HUT is free of infrared
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divergence, and it is the same as that for the spin average one calculated in Ref. [7],

H
(1)DY
UT = H

(1)
UU |DY

=
αs

2π
CF

[
ln

Q2

µ2
(1 + ln ρ2)− ln ρ2 + ln2 ρ+ 2π2 − 4

]
,

which is very interesting and suggests that the hard factors are spin-independent. Follow-
ing the same procedure, we calculate the hard factor for the single transverse spin depen-

dent cross section in SIDIS. Again, it is the same as the spin-average case, H
(1)
UT |SIDIS =

H
(1)
UU |SIDIS [7]. Clearly, the hard factors for DY and SIDIS differ by a factor of π2. The hard

factors in other TMD factorization scheme can be calculated similarly.
The factorization formula Eq. (3) contains large logarithms in terms of ln2(Q2b2) [11]

which is also shown in the total result of Eq. (7). Follow the CSS method [6], one could
resum these large logarithms. Here it is important to realize that Sivers function in b-

space f̃
(⊥α)
1T (z1, b, ζ1) obeys the same energy evolution equation as the spin-averaged quark

distribution [11]. Solving these evolution equations, we will have

W̃ α
UT (Q; b) = e−SUT (Q2,b)W̃ α

UT (C1/b, b)

= (−ibα
⊥
/2) e−SUT (Q2,b)Σi,j

×∆CT
qi ⊗ f

(3)
i/A(z

′

1, z
′′

1 )Cq̄j ⊗ fj/B(z
′

2) , (9)

where fj/B represents the integrated parton distribution from hadron B, and f
(3)
i/A the twist-

three function from hadron A, of which TF (z1, z2) is the most relevant one as TF (z1, z1)
appears in the leading order contribution in Eq. (6). The last step of the above equation
comes from further applying the collinear factorization formula Eq. (4) at lower energy scale
C1/b. From the above one-loop calculations, we find that the perturbative Sudakov factor
SUT have the same form as that for the spin-average case,

SUT (Q
2, b) =

∫ C2

2
Q2

C2

1
/b2

dµ2

µ2

[
ln

(
C2

2Q
2

µ2

)
AUT (C1; g(µ))

+BUT (C1, C2; g(µ))] , (10)

up to one-loop order, where C1 and C2 are constants in the order of 1.
TheA, B and C functions can be calculated in perturbation theory: A =

∑
n=1A

(n)(αs/π)
n.

From the explicit one-loop calculations, we obtain the following results for these coefficients,

A
(1)
UT = CF , B

(1)
UT = −3/2CF , ∆CT (0)

qq = δ(1− x) ,

∆CT (1)
qq = − 1

4Nc
(1− x) +

CF

2
δ(x− 1)

[
π2

2
− 4

]
, (11)

where Cqq follows the spin-average case [6], and we have chosen the canonical values for
C1 = 2e−γE and C2 = 1 to simplify the above expressions. For SIDIS, A, B remain the

same, whereas ∆CT have opposite sign and there is no π2 term in ∆C
T (1)
qq . The above

coefficients can also be calculated by comparing the fixed order calculations of the differential
cross section depending on transverse momentum [14] to the expansion of the resummation
formula Eq. (9). We have checked that this gives the consistent results.
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Eq.(9) is our main result for the QCD resummation for the single spin asymmetry in the
DY process. The structure, in particular, the pre-factor (ibα

⊥
) is the unique feature for the

single transverse spin azimuthal angel dependent cross section. This pre-factor comes from
the explicit one-loop calculation above. It also guarantees the proper behaviors for the spin
asymmetry at small and large transverse momentum. At very small q⊥, the asymmetry has
to vanish, so that the differential cross section and W α

UT will be proportional to qα
⊥
. On the

other hand, at large q⊥, the asymmetry is power suppressed by 1/q⊥ from the perturbative
calculation, which leads to W α

UT ∝ qα
⊥
/q4

⊥
. With the correct coefficients extracted from our

one-loop calculation, these behaviors are satisfied in Eq. (9). We would like to emphasize

that the TMD and collinear factorizations for W̃ α
UT (b) in Eqs. (3) and (4) are crucial to

obtain the final resummation formula of Eq. (9). Without these factorization results, we
can not apply the CSS resummation.

Another important feature is that Eq. (9) depends on the integrated parton distributions,
which are universal. The opposite sign for the SSAs in DY and SIDIS is reflected by the
opposite C coefficients in this formula. Moreover, our resummation formula is scheme-
independent, although the TMD factorization Eq. (3) depends on the scheme of how to
regulate the light-cone singularities in the TMD distributions. This can be clearly seen from
the disappearance of ρ and ζ2i in Eq. (9) with the above coefficients.

In summary, we have derived the CSS resummation formalism for the single spin asym-
metries in DY and SIDIS processes. The relevant coefficients are calculated up to one-loop
order. These results shall be further studied to understand the energy dependence of the
SSAs in these processes, and provide more accurate predictions for the DY process which
is actively pursued by several experiments. Our results shall shed light on all other k⊥-odd
observables, and should be applied to the azimuthal angular dependent observables in DY,
SIDIS, and e+e− annihilation processes. We performed our calculations in the framework
of the collinear correlation functions of hadrons. This allows us to compute the cross sec-
tions in a consistent and rigorous way. We noticed that recently, a different framework has
been developed where a gluonic degree of freedom is included in the leading order quark
target [21]. It will be interesting to apply this method and compare with our results.
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