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I show that the de Sitter Equilibrium cosmology generically predicts observable levels of curvature
in the Universe today. The predicted value of the curvature, Ωk, depends only on the ratio of the
density of non-relativistic matter to cosmological constant density, ρ0m/ρΛ, and the value of the
curvature from the initial bubble that starts the inflation, ΩB

k . The result is independent of the
scale of inflation, the shape of the potential during inflation, and many other details of the cosmology.
Future cosmological measurements of ρ0m/ρΛ and Ωk will open up a window on the very beginning
of our Universe and offer an opportunity to support or falsify the de Sitter Equilibrium cosmology.

The de Sitter Equilibrium (“dSE”) cosmology is a
framework for cosmology that pictures the Universe eter-
nally fluctuating in an equilibrium state. In this picture
phenomena similar to the cosmos we observe around us
come about as fluctuations. The dSE framework assumes
that the observed cosmic acceleration is driven by a true
cosmological constant Λ which causes the Universe to
approach a “de Sitter space” at late times when the cos-
mological constant dominates the cosmic evolution. The
de Sitter space is the equilibrium state. It has an en-
tropy given by SΛ = π(cH−1

Λ
/lP )

2 which is known to
be maximal [1], a temperature given by TΛ = kBh̄HΛ

whereHΛ = 8πG/3ρΛ ≡ Λ/3 is the Hubble constant dur-
ing the Λ dominated phase and lP is the Planck length.
Background on dSE cosmology, including how it evades
the notorious “Boltzmann Brain” problem of equilibrium
cosmologies may be found in [2, 3].

Cosmic inflation gives an established account of the
very early history of the Universe. Inflation assumes that
the early Universe was dominated by the potential energy
of a scalar field, the “inflaton”, which caused a period of
accelerated cosmic expansion or “inflation” before decay-
ing into ordinary matter through a process called reheat-
ing. A simple account of this inflationary epoch leads to
a detailed set of predictions which so far have been born
out by observations [4]. However, to understand infla-
tion fully and make the predictions robust one must put
cosmic inflation into a larger context that accounts for
how inflation starts and assigns relative probabilities to
different possible starts to inflation as well as other starts
to the observed Universe that may not even involve in-
flation. dSE cosmology gives one way to do this.

All ideas for complete cosmological frameworks (in-
cluding dSE and the popular “eternal inflation” picture)
involve some ad hoc assumptions about how the under-
lying fundamental physics actually works [3]. Until we
understand which assumptions about the fundamental
physics are correct, the best any of these pictures can

0 0.2 0.4 0.6 0.8 1
0.01

0.015

0.02

0.025

0.03

0.035

ρ
m
0 /ρΛ

Ω
kf

FIG. 1. The predicted value of Ωf

k vs. ρm/ρΛ using the fidu-

cial value ΩB
k = 0.5. Predications from other values of the

bubble curvature are given by Ωk = Ωf

k
× (ΩB

k /0.5)

hope to provide is an opportunity for observational tests
of one set of assumptions or another. This paper reports
a prediction of the value of the cosmic curvature, Ωk,
from the dSE picture. The predicted value depends only
on the ratio of the non-relativistic matter density today
ρ0m to ρΛ and is proportional to the initial curvature (ΩB

k )
provided by the bubble that started the period of cosmic
inflation. The prediction is depicted in Fig. 1.
The prediction is interesting for a couple of reasons.

Firstly, the result is only just consistent with current
data [4], and uncertainties in Ωk, ρm and ρΛ will reduce
substantially in the foreseeable future [5]. Future data
showing a positive value for Ωk would offer strong sup-
port for the dSE picture. Data consistent with Ωk = 0
with very small uncertainties (the cosmic variance limit
of ∆Ωk ≈ 0.00001 may be achievable) would rule out
the dSE picture except for extremely small values of ΩB

k .
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FIG. 2. Solid: The Hubble length vs. cosmic scale factor a
(scaled by today’s values, cH−1

0
and a0 respectively). The

letters mark the times when the density of the inflaton (I),
relativistic matter (r), non-relativistic matter (m) and (Λ) in
turn start to dominate Eqn. 1. Dashed: The past horizon
of observations deep in the de Sitter era. The shaded region
shows events that will never be seen by the observer no matter
how late the observation is made. Dot-Dashed: Maximum
length scale affected by inflation.

Further study of the initial bubbles could even completely
rule out the small ΩB

k dSE case, leading to the possibility
of fully falsifying the dSE picture.
Secondly, the dSE prediction is interesting for its lack

of dependence on many details of the cosmology. There
is no dependence, for example, on the shape of the infla-
ton potential during inflation, the scale of inflation, the
specifics and duration of the reheating and many other
factors. As future data further constrain cosmological
parameters, only ΩB

k will be in play, and this quantity
would be subject to the sort of pressures just discussed.
I now derive the result shown in Fig. 1. The Friedmann

equation

H2
≡

(

ȧ

a

)2

=
8πG

3
(ρI + ρr + ρm + ρk + ρΛ) (1)

relates the expansion rateH to the (effective) energy den-
sities of, in order of appearance, the inflaton, relativistic
matter, non-relativistic matter, curvature, and cosmolog-
ical constant in a homogeneous and isotropic Universe.
The scale factor a tracks the cosmic expansion. For the
solutions I consider a is monotonic in time and I use it
as a time variable in what follows. The “Hubble length”
(≡ cH−1) is shown by the solid curve in Fig. 2 for the
entire history of the Universe in a standard cosmological
picture.
The dashed curve in Fig. 2 is the “past horizon”

hp (a1) ≡ a1

∫ aΛ

a1

da

a2H
(2)

of observations at a time deep in the de Sitter era given
by aΛ. Specifically, hp(a1) is the physical distance at time
a1 between an observer at rest with the expansion and
a photon that will just reach the observer when a = aΛ.
Curves are shown for two values of aΛ (identifiable by
the value of a where each curve drops toward zero). The
two overlap except right near the respective values of aΛ.
This is due to the event horizon (of size = cH−1) that
forms in the de Sitter era. From right to left, the two
past horizon curves run up against the event horizon and
then “exit” out into the pre-de Sitter era together. The
past horizon for any event deep in the de Sitter era will
will do the same. The shaded region in Fig. 2 represents
events that will never be seen by the observer even after
waiting an infinitely long time.

Even though H appears in the integral defining the
past horizon, the curve takes a simple form hp ∝ a for
much of the history of the Universe, independently of the
(possibly complicated) behavior of H(a). This is because
the evolution of hp is dominated by the cosmic expansion
for hp ≫ cH−1 (in this regime the cosmic expansion in-
creases the distance hp at a rate much faster than c).
This simple behavior for hp(a), regardless of the behav-
ior of H(a) over much of the cosmic history, is central to
how the prediction for Ωk remains independent of many
details of the cosmology [6].

In the dSE framework the equilibrium state has finite
entropy SΛ, and it has been argued that finite SΛ implies
the full physical system is finite, describable in a finite
Hilbert space with dimension eSΛ [7]. For such a finite
system, any field theoretic description is necessarily ap-
proximate and will only have a finite domain of validity
(otherwise an infinite Hilbert space would be needed).
Limitations on the validity of field theory will necessarily
limit scalar field inflation. (When allowed an unlimited
domain of inflaton validity, inflation typically leads to
“eternal inflation” [8] which lasts forever, creates infinite
entropy and volume, and incurs problematic measure is-
sues as a result). The dSE picture reconciles inflation
with the finite entropy by only allowing an amount of in-
flation sufficient to fill the horizon of the observer. This
bound prevents the cosmology from producing more en-
tropy than the maximum value SΛ. Also, the dSE bound
generically keeps inflation far from the “self reproduc-
tion” regime that leads to eternal inflation.

The dSE bound originates with the finiteness suggested
by the de Sitter horizon from a truly constant Λ and
in that sense is “holographic” [3]. Holographic bounds
which do not incorporate Λ from today’s acceleration
(critical to my argument of finiteness) give much less re-
strictive results [9]. Interestingly, when re-expressed as a
constraint on inflationary e-foldings the dSE bound looks
similar to the bound found in [10] which does include Λ
(although the methods in [10] appear different) [11].
By staying strictly finite, the dSE picture does not

have the measure problems of the infinite inflationary
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FIG. 3. Solid: The Hubble length for many different inflation
models, all saturating the dSE bound by starting on the past
horizon curve (dashed). The 47 different inflation models (not
resolved on this plot) represent a wide range of inflation scales,
inflaton potentials and reheating rates (but use the same val-
ues of ρ0m and ρΛ). Also shown is the curvature length given
by cH−1

k (triangles). The fact that the past horizon (which
defines the dSE bound) tracks cH−1

k in such a simple manner
over most of the history of the Universe leads to the sim-
ple predictions for Ωk, independently of many details of the
cosmology.

scenarios. According to the dSE bound the early part
of inflation adjacent to the shaded region of Fig. 2 is ex-
cluded by the breakdown of the field theory description.
The earliest that inflation, and thus the cH−1(a) curve,
is allowed to start is right on the past horizon (dashed)
curve. Since other factors exponentially favor inflation
starting as early as possible [3] I take the dSE bound to
be saturated in what follows: I start all inflation scenar-
ios “on the past horizon”, giving c(Hi)−1 = hp(a

i) where
i superscripts designate the start of inflation [12].

Figure 3 is similar to Fig. 2 except that a multitude of
different inflation scenarios are shown on the same plot.
There are actually 47 different solid curves (unresolved
on the plot, and discussed in detail in [13]) which cor-
respond to changing the inflation potential, the scale of
inflation, and the rate of reheating (in the slowest cases,
the reheating only completes at around T = 1010K, just
in time for Big Bang Nucleosynthesis). Each scenario
starts right on the past horizon (dashed line) thus satu-
rating the past horizon bound.

Figure 3 also shows the curvature radius cH−1

k (H2

k ≡

8πG/3ρk), displaying information about ρk on the plot
and helping to illustrate how the simple dSE prediction
comes about. The initial valueHi

k is related to the bubble
curvature and the initial Hubble parameter Hi by ΩB

k ≡

(Hi
k/H

i)2. Because by definition ρk ∝ 1/a2, H−1

k ∝ a, so
cH−1

k runs parallel to the past horizon in Fig. 3 for most
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FIG. 4. This close-up of Fig 3 in the vicinity of a = a0

shows the same curves, with additional curves (thin solid
lines) showing the two asymptotes of the past horizon curve
(dashed). Markers show quantities evaluated at a = a0 rele-
vant to calculating Ωk ≡ (Hk/H)2 as discussed in the text.
The value of cH−1

k
(filled square) is related to the open square

by ΩB
k while H−1 (filled circle) is related to the horizontal

asymptote (partly hidden open circle at cH−1

Λ
) by Eqn. 1.

The shape of the past horizon curve (Eqn. 2) quantitatively
links the two asymptotes, giving Eqn. 3

of the history of the Universe. This parallel behavior is
crucial to my result. According to the dSE picture, the
curve cH−1 must start on the past horizon curve. The
cH−1

k and hp curves evolve linearly together until near
the current epoch (shown in Fig. 4), allowing a simple
relationship to be established between Ωk and ΩB

k .
Figure 4 illustrates how the crucial ingredients needed

to compute Ωk ≡ (Hk/H)2 are all contained in the curves
and asymptotic behaviors discussed above. To the extent
that we know ρ0m, ρk and ρΛ we know the shape of H(a)
around today, since ρm and ρΛ (and to a much lesser ex-
tent ρk) completely dominant Eqn. 1 during the current
era [14]. The quantity H(a) appears in Ωk as well the
expression for hp(a) (Eqn. 2). Since hp(a) only deviates
from its asymptotic values around the current era, only
the ρ’s listed here are needed to determine this curve as
well. The quantitative expressions for these various in-
gredients (all given above) can be combined to produce
the main result:

Ωk =
1

g2
ΩB

k
(

ρ0
m

ρΛ
+

ρ0

k

ρΛ
+ 1

) (3)

where

g

(

ρ0m
ρΛ

,
ρ0k
ρΛ

)

≡

∫

∞

0

dx

x2

√

x−3 ρ0
m

ρΛ
+ x−2

ρ0

k

ρΛ
+ 1

(4)

Due to the appearance of ρ0k on the right hand side,
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Eqn. 3 give an implicit equation for Ωk

(

ρ0m/ρΛ,Ω
B
k

)

which can easily be solved numerically to give Fig. 1.

Attempts such as dSE to construct a complete theo-
retical framework for cosmology are in a primitive state.
There are a number of ad hoc assumptions that go into
the dSE framework (spelled out in [3]). The prediction I
report here should be understood in that context. Prob-
ably the most popular cosmological framework is eternal
inflation. That picture has its own particular assump-
tions, including the validity of the semiclassical inflaton
field theory coupled to Einstein gravity over an infinite
time and infinite volume. These infinities are critical
to the mechanisms believed to cause eternal inflation to
dominate the cosmos and any breakdown of these as-
sumptions (such as replacing either of these infinities with
arbitrarily large but finite values) would undermine much
of the current thinking on this subject. The measure
problem of eternal inflation that has so far undermined
the ability of eternal inflation to actually make predic-
tions is related to these infinities, but many are hopeful
that this problem will eventually find a resolution with-
out removing the infinities that are considered critical to
the overall picture [8, 15]).

The dSE framework is a finite alternative to eternal
inflation. The finiteness has its own intrinsic appeal (for
example, dSE replaces assumptions about initial condi-
tions with an equilibrium state for the Universe), and the
finiteness prevents measures from being a problem. The
dSE picture is based on the idea that physics operates in
such a way that the physical world, at its most funda-
mental, is described by a finite Hilbert space of dimension
eSΛ . One then has to view any field theoretic degrees of
freedom such as the inflaton or those of Einstein gravity
as approximate, since it would take an infinite Hilbert
space to describe them fully. The dSE framework makes
assumptions about when the field theoretic description
is a good one and when and how it breaks down. These
assumptions are chosen to give a workable cosmology.
One can think of the dSE cosmology as an attempt to
construct a realistic finite cosmology by exploiting un-
certainties about the underlying fundamental physics.

The existence of such great uncertainties may not be
satisfying, but it is the state of the art. Under these
conditions one can hope that by demanding a realistic
cosmology insights might be gained into the nature of
the underlying physics. This project was conceived in
this spirit and it is in this context that I find the result
very interesting. Unlike other models that give nonzero
Ωk [16]), this result is independent of the shape and scale
of the inflaton potential during inflation, the nature of
reheating and many other details.

If future data reveal positive values of Ωk close to the
current bounds, that could be seen as support for the dSE
picture. Such results could be interpreted as constraining

the value of ΩB
k , giving a direct window on the tunneling

event that created the Universe we observe. Further work
is needed to understand how low a value of ΩB

k can be
tolerated in this picture, but it seems unlikely that values
much smaller than the current bound will make sense. If
this claim is born out, the result presented here offers an
opportunity to falsify the dSE picture.
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