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We argue that the 4-state Potts antiferromagnet has a finite-temperature phase transition on any
Eulerian plane triangulation in which one sublattice consists of vertices of degree 4. We furthermore
predict the universality class of this transition. We then present transfer-matrix and Monte Carlo
data confirming these predictions for the cases of the union-jack and bisected hexagonal lattices.
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The q-state Potts model [1, 2] plays an important
role in the theory of critical phenomena, especially in
two dimensions [3–5], and has applications to various
condensed-matter systems [2]. Ferromagnetic Potts mod-
els are by now fairly well understood, thanks to universal-
ity; but the behavior of antiferromagnetic Potts models
depends strongly on the microscopic lattice structure, so
that many basic questions must be investigated case-by-
case: Is there a phase transition at finite temperature,
and if so, of what order? What is the nature of the low-
temperature phase(s)? If there is a critical point, what
are the critical exponents and the universality classes?
Can these exponents be understood (for two-dimensional
models) in terms of conformal field theory [5]?

One expects that for each lattice L there exists a value
qc(L) [possibly noninteger] such that for q > qc(L) the
model has exponential decay of correlations at all tem-
peratures including zero, while for q = qc(L) the model
has a zero-temperature critical point. The first task, for
any lattice, is thus to determine qc.

Some two-dimensional (2D) antiferromagnetic mod-
els at zero temperature can be mapped exactly onto a
“height” model (in general vector-valued) [6, 7]. Since
the height model must either be in a “smooth” (or-
dered) or “rough” (massless) phase, the corresponding
zero-temperature spin model must either be ordered or
critical, never disordered. Experience tells us that the
most common case is criticality [8]. The long-distance
behavior is then that of a massless Gaussian with some
(a priori unknown) “stiffness matrix” K > 0. The crit-
ical operators can be identified via the height mapping,
and the corresponding critical exponents can be pre-
dicted in terms ofK. Height representations thus provide
a means for recovering a sort of universality for some (but
not all) antiferromagnetic models and for understanding
their critical behavior in terms of conformal field theory.

In particular, when the q-state zero-temperature Potts
antiferromagnet on a 2D lattice L admits a height rep-
resentation, one ordinarily expects that q = qc(L).

This prediction is confirmed in most heretofore-studied
cases: 3-state square-lattice [6, 9, 11, 12], 3-state kagome
[13, 14], 4-state triangular [15], and 4-state on the line
graph of the square lattice [14, 16]. The only known ex-
ceptions are the triangular Ising antiferromagnet [17] and
the 3-state model on the diced lattice [10].

Moore and Newman [15] observed that the height map-
ping employed for the 4-state Potts antiferromagnet on
the triangular lattice carries over unchanged to any Eule-
rian plane triangulation (a graph is called Eulerian if all
vertices have even degree; it is called a triangulation if all
faces are triangles). One therefore expects naively that
qc = 4 for every (periodic) Eulerian plane triangulation.

Here we will present analytic arguments suggesting
that this naive prediction is false for an infinite class of
Eulerian plane triangulations, namely those in which one
sublattice consists entirely of vertices of degree 4. More
precisely, we predict that on these lattices the 4-state
Potts antiferromagnet has a phase transition at finite
temperature (so that qc > 4); we shall also predict the
universality class of this transition. We will conclude by
presenting transfer-matrix and Monte Carlo data con-
firming these predictions for the cases of the union-jack
[D(4, 82)] and bisected hexagonal [D(4, 6, 12)] lattices.

Exact identities. Let G = (V,E) and G∗ = (V ∗, E∗)
be a dual pair of connected graphs embedded in the plane
(Fig. 1a). Then define Ĝ = (V ∪ V ∗, Ê) to be the graph
with vertex set V ∪ V ∗ and edges ij whenever i ∈ V lies
on the boundary of the face of G that contains j ∈ V ∗

(Fig. 1b). The graph Ĝ is a plane quadrangulation: on

each face of Ĝ, one pair of diametrically opposite vertices
corresponds to an edge e ∈ E and the other pair corre-
sponds to the dual edge e∗ ∈ E∗. In fact, Ĝ is nothing
other than the dual of the medial graph M(G) = M(G∗)

[19]. Conversely, every plane quadrangulation Ĝ arises
via this construction from some pair G,G∗.

Now let G̃ be the graph obtained from Ĝ by adjoin-
ing a new vertex in each face of Ĝ and four new edges
connecting this new vertex to the four corners of the face
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Figure 1: (a) A dual pair G (black dots and lines) and G∗

(gray dots and lines). (b) The quadrangulation Ĝ (black/gray

dots and thick lines) and triangulation G̃ (all dots and lines).

(Fig. 1b). This graph G̃ is an Eulerian plane triangu-
lation, with vertex tripartition V ∪ V ∗ ∪ C where C is
the set consisting of the “new” degree-4 vertices. Con-
versely, every Eulerian plane triangulation in which one
sublattice consists of degree-4 vertices arises in this way.
We will show elsewhere [20] that the 4-state Potts an-

tiferromagnet at zero temperature (= 4-coloring model)

on G̃ can be mapped exactly onto the 9-state Potts
ferromagnet on G and G∗:

Z
G̃
(4,−1) = 4·3−|V | ZG(9, 3) = 4·3−|V ∗| ZG∗(9, 3) (1)

where ZG(q, v) denotes the Potts-model partition func-
tion with v = eJ − 1 (J = nearest-neighbor coupling).

The proof passes either via an RSOS model on Ĝ or via
a completely packed loop model on M(G).
Height representation [15]. Consider the 4-coloring

model on an Eulerian plane triangulation Θ. We can
orient the edges of Θ such that the three edges around
each face define a cycle (clockwise on one sublattice of Θ∗

and counterclockwise on the other). Let e0, e1, e2 be unit
vectors at angles 0, 2π/3, 4π/3 in the plane. Then, to any
proper 4-coloring σ of the vertices of Θ, we assign heights
hi in the triangular lattice such that hj − hi = e0, e1, e2
on an oriented edge ~ij according as {σi, σj} = {1, 2} or
{3, 4}, {1, 3} or {2, 4}, {1, 4} or {2, 3}.
Phase transition and universality class. Let now G,

G∗ and G̃ be infinite regular lattices. Conformal field the-
ory [5] tells us that a q-state Potts ferromagnet with q > 4
cannot have a critical point. Therefore the 9-state Potts
ferromagnet in (1) is noncritical, suggesting that the 4-

state Potts antiferromagnet at zero temperature on G̃ is
also noncritical [21]. But since this model has a height
representation, it cannot be disordered; therefore it must
be ordered. It follows that the 4-state Potts antiferro-
magnet on G̃ has an order-disorder transition (whether
first-order or second-order) at finite temperature.
We can also understand the type of order in the 4-

coloring model on G̃, and hence the universality class of
the order-disorder transition in case it is second-order. If
the lattice G is self-dual, the point (q, v) = (9, 3) lies on
the self-dual curve v =

√
q, which is expected to be the lo-

cus of first-order transitions; so there are phases in which
G is ordered and G∗ is disordered, and vice versa (nine

Figure 2: (a) Union-jack lattice, L = 6. (b) Bisected hexago-
nal lattice, L = 8. The shaded areas show the minimal unit
cells (pink) and the rectangular unit cells used in the row-to-
row transfer-matrix computations (blue). The tripartition of
the vertex set is shown in black/gray/white as in Fig. 1.

of each). We therefore predict that the 4-coloring model

on G̃ has phases in which the sublattice V is ordered in
one of the four possible directions while V ∗ and C are
disordered, and the same with V and V ∗ interchanged.
The symmetry is S4 × Z2, so we expect that the transi-
tion is in the universality class of a 4-state Potts model
plus an Ising model (decoupled). On the other hand, if
G is not self-dual, then we expect (barring a fluke) that
(q, v) = (9, 3) does not lie on a phase-transition curve;
hence one of the lattices G, G∗ will be ordered (say, G)
while the other is disordered. In this case we predict that
the 4-coloring model on G̃ has phases in which the sub-
lattice V is ordered in one of the four possible directions
while V ∗ and C are disordered. The symmetry is S4, and
the universality class is that of a 4-state Potts model.
We recall that the central charge c and magnetic and

thermal exponents Xm, Xt are (c,Xm, Xt) = (1
2
, 1
8
, 1) for

the Ising model and (1, 1
8
, 1
2
) for the 4-state Potts model.

Union-jack (UJ) lattice. The simplest self-dual case is

G = G∗ = Ĝ = square lattice and G̃ = union-jack lattice
(Fig. 2a). We computed transfer matrices with fully
periodic boundary conditions for even widths L ≤ 20
(v = −1) [22] and L ≤ 16 (general v). Estimates of
c,Xm, Xt were extracted from the free energy fL and
free-energy gaps ∆fL via [5]

fL = f∞ − πc/(6L2) + o(1/L2) (2)

∆fL = 2πX/L2 + o(1/L2) (3)

Fig. 3 (upper left) shows estimates of c(v) at q = 4.
The maximum at v ≈ −0.95 indicates the transition:
finite-size scaling (FSS) yields vc = −0.944(5) and c =
1.510(5), in agreement with our prediction c = 1+ 1

2
= 3

2
.

The crossings of Xm(v) and Xt(v) yield vc = −0.9488(3),
Xm = 0.1255(6) and Xt = 0.51(2), in agreement with
Xm = 1

8
and Xt =

1
2
[23].

A similar plot for c(q) at v = −1 shows the lattice-
independent Berker–Kadanoff phase [c = 1− 6(t− 1)2/t
with q = 4 cos2(π/t)] for 0 ≤ q < q0 and a noncritical
phase for q0 < q < qc. The maxima of c(q) [Fig. 3, upper
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Figure 3: Estimates for central charge c and critical exponents
Xm, Xt for the UJ lattice, as a function of v at q = 4 (left)
and as a function of q at v = −1 (right). Dashed vertical lines
indicate our best FSS estimates of vc, q0 and qc. Fits used
Eqs. (2)/(3) with o(1/L2) replaced by A/L4, for three (resp.
two) consecutive values of L.

right] yield the estimates q0 = 3.63(2), c = 1.43(1) and
qc = 4.330(5), c = 1.63(1). The crossings of Xm(q) and
Xt(q) yield q0 = 3.616(6), Xm = 0.0751(3), Xt = 0.88(2)
and qc = 4.326(5), Xm = 0.134(2), Xt = 0.52(3).
The data for q0 are consistent with q0 = B10 = (5 +√
5)/2 ≈ 3.61803 [24] and c = 7/5, Xm = 3/40, Xt =

7/8; the underlying conformal field theory could be a
pair of m = 4 minimal models [25].
Concerning qc, we have seen that at (q, v) = (4, vc) the

critical behavior is that of a 4-state Potts model plus an
Ising model (decoupled), and it is compelling to think
that this behavior will persist along a curve in the (q, v)-
plane passing through (q, v) = (qc,−1). However, it is
possible that (qc,−1) might be the endpoint of this curve,
in which case the model could be driven there to some
sort of multicritical behavior: for instance, a 4-state Potts
model plus a tricritical Ising model (decoupled), which
would have c = 1+ 7

10
= 17

10
andXm = X1/2,0 = 21/160 =

0.13125 [25]. Alternatively, the critical exponents along
the transition curve may vary continuously with q.
We also simulated the q = 4 model, using a cluster

Monte Carlo (MC) algorithm, on periodic L× L lattices
with 8 ≤ L ≤ 512. We measured the sublattice mag-
netizations MA,MB,MC , the nearest-neighbor correla-
tions EAB, EAC , EBC and the next-nearest-neighbor cor-
relations EAA, EBB, ECC . We then computed the 3 × 3
sublattice susceptibility matrix and the 6 × 6 specific-
heat matrix; from their eigenvalues we can extract the
magnetic and thermal critical exponents. The leading
susceptibility eigenvalue diverges with the predicted ex-
ponent γ/ν = 2 − 2Xm = 7/4 (Fig. 4a), and FSS anal-

Figure 4: Monte Carlo data for the UJ lattice at q = 4.
(a) Leading susceptibility eigenvalue λ1(χ) divided by

L7/4. (b) Leading specific-heat eigenvalue λ1(C) divided
by L. (c) Second susceptibility eigenvalue λ2(χ) divided by

L3/2(logL)−1/4. Lines are meant only to guide the eye.

ysis yields the estimate vc = −0.9485(1). Likewise, the
leading specific-heat eigenvalue diverges with exponent
α/ν = 2 − 2Xt = 1 [23] (Fig. 4b), and FSS analysis
yields the estimate vc = −0.9483(2). It is curious that
we do not see here the multiplicative logarithms that
are expected [26] for the 4-state Potts model. The sec-
ond susceptibility eigenvalue diverges as L3/2, probably
with a multiplicative logarithm (Fig. 4c), while the sec-
ond specific-heat eigenvalue tends to a finite constant; we
have no theoretical understanding of these behaviors.

A transition in this model was recently predicted
by Chen et al. [27], who found vc = −0.9477(5) by a
tensor renormalization-group method; they also gave an
entropy-counting argument predicting the type of order.
However, in their approximation the specific heat was
non-divergent, exhibiting a jump discontinuity.

Bisected hexagonal (BH) lattice. The simplest non-
self-dual case is G = triangular lattice and G∗ = hexag-
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onal lattice, yielding Ĝ = diced lattice and G̃ = bisected
hexagonal lattice (Fig. 2b). We computed transfer matri-
ces with fully periodic boundary conditions for the same
widths as for the UJ lattice, except that L must now be a
multiple of 4 to be compatible with the periodic bound-
ary conditions (see Fig. 2b). FSS analysis of c(v) at q = 4
yields the estimates vc = −0.8281(1) and c = 1.000(5),
in agreement with our prediction c = 1. The crossing of
Xm(v) and the minimum of Xt(v) yield vc = −0.8280(1),
Xm = 0.15(1) and Xt = 0.65(10), which are compatible
with Xm = 1

8
and Xt =

1
2
although rather imprecise.

The maximum of c(q) yields qc = 5.395(10), c =
1.20(5). The crossing of Xm(q) and the minimum of
Xt(q) yield qc = 5.397(5), Xm = 0.15(1), Xt = 0.6(1).

We also did MC simulations for q = 4 and 8 ≤ L ≤ 512.
The leading susceptibility eigenvalue diverges as expected
as L7/4 [possibly with a multiplicative (logL)−1/8] and
yields vc = −0.828066(4). The leading specific-heat
eigenvalue is compatible with the 4-state Potts behav-
ior L(logL)−3/2.

A transition in this model was also conjectured in [27].

Our result qc > 5 suggests that there will be a finite-
temperature transition also in the 5-state model. Quite
surprisingly, we find this transition to be second-order ,
despite the absence of an obvious universality class (since
q > 4); however, it is also conceivable that the tran-
sition is weakly first-order, with a correlation length
that is finite but very large. Preliminary results from
transfer matrices are v′c = −0.9513(1), c = 1.17(5),
Xm = 0.16(1), Xt = 0.56(4). Preliminary MC results
are v′c = −0.95132(2), Xm = 0.113(4), Xt = 0.495(5).
More detailed data will be reported separately [28].

Taking into account the likely corrections to scaling,
our data for (q, v) = (4, vc), (5, v

′
c) and (qc,−1) are com-

patible with all three models being in the 4-state Potts
universality class.

Conclusion. We have given: (a) an analytical existence
argument for a finite-temperature phase transition in a
class of 4-state Potts antiferromagnets; (b) a prediction
of the universality class; (c) large-scale numerics, using
two complementary techniques, to determine critical ex-
ponents; (d) determination of q0 and qc as well as vc;
and (e) the surprising prediction of a finite-temperature
phase transition also for q = 5 on the BH lattice [28].
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