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We explore feasibility of a quantum self-correcting memory based on 3D spin Hamiltonians with
topological quantum order in which thermal diffusion of topological defects is suppressed by macro-
scopic energy barriers. To this end we characterize the energy landscape of stabilizer code Hamil-
tonians with local bounded-strength interactions which have a topologically ordered ground state
but do not have string-like logical operators. We prove that any sequence of local errors mapping
a ground state of such Hamiltonian to an orthogonal ground state must cross an energy barrier
growing at least as a logarithm of the lattice size. Our bound on the energy barrier is tight up to a
constant factor for one particular 3D spin Hamiltonian.
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Topologically ordered phases of matter display a va-
riety of fascinating properties having no counterpart in
the classical physics. Most notable ones are topological
invariants such as the the Hall conductance, ground state
degeneracy, and topological entanglement entropy [1]
which are insensitive to generic local perturbations [2–4].
The intrinsic stability against perturbations motivated
interest to topological phases as a storage medium for a
reliable quantum memory [3, 5, 6] and as a platform for
building a topological quantum computer [3, 7].

A big open question in the theory of topological quan-
tum order (TQO) concerns feasibility of a non-volatile,
or, self-correcting, quantum memory [3, 8]. Such a mem-
ory would permit reliable long-term storage of quantum
information in a presence of sufficiently weak thermal
noise without need for active stabilization and error cor-
rection during the storage period. The main challenge
in designing Hamiltonians with self-correcting properties
is to combine TQO with an energy landscape that could
prevent errors caused by thermal fluctuations from ac-
cumulating. This could guarantee that the error density
remains sufficiently small during the entire storage period
and the encoded information can be safely extracted from
the memory by performing an active error correction at
the read-out phase.

In spite of being intrinsically stable against perturba-
tions at the zero-temperature, TQO models display ex-
treme fragility against thermal fluctuations [9] suggest-
ing impossibility of quantum self-correction. A thermal
stability analysis involving finite-temperature extensions
of the topological entanglement entropy has been under-
taken for the 2D and 3D toric code models by Castelnovo
and Chamon [10], and by Iblisdir et al [10]. These models
were shown to undergo a transition from a topologically
ordered phase at T = 0 to a different phase with either
partial or no topological order at any positive tempera-
ture [10].

The first rigorous analysis of self-correcting properties
for the toric code models was carried out Alicki et al [11,

12]. It showed that the 4D toric code Hamiltonian has
self-correcting properties for sufficiently low temperature,
while 2D and 3D toric codes are not self-correcting at any
finite temperature. The ideas of [11, 12] were developed
further by Kay [13], Chesi et al [14, 15] and Pastawski et
al [16].

The main feature of the 4D toric code model respon-
sible for self-correction is the macroscopic energy barrier

that must be crossed by any sequence of local errors
whose combined action on encoded states cannot be cor-
rected at the final read-out phase [12]. The height of this
barrier grows linearly with the lattice size due to a finite
string-tension characterizing boundaries of membranes
associated with errors. It is analogous to the energy bar-
rier separating ground states with positive and negative
magnetization in the ferromagnetic 2D Ising model. Un-
fortunately, this behavior cannot be reproduced in any
known 2D or 3D model due to a presence of point-like
excitations carrying a non-trivial topological charge, or,
point-like defects. These defects are analogous to domain-
walls in the 1D Ising model — a single isolated defect has
only a constant energy cost, but its creation requires a
highly non-local operation affecting a macroscopic num-
ber of qubits (spins). Whether or not the presence of
point-like defects rules out self-correcting properties may
depend on how fast these defects can diffuse across the
system. For example, Hamma et al [17] used a coupling
with a bosonic field to create an effective long-range at-
tractive interaction between defects whereby suppressing
the diffusion. A different possibility is realized in the 3D
Chamon’s model [18, 19]. This model offers a topologi-
cal protection against diffusion of some types of defects
(but not all of them). These defects, called monopoles
in [19], can be created at corners of rectangular shaped
membranes. A hopping of a single isolated monopole
between adjacent lattice sites is a highly non-local oper-
ation affecting a macroscopic number of qubits, see [19]
for details.

In the present paper we propose yet another possibility
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to suppress the diffusion of defects that can be realized
in a certain class of 3D spin Hamiltonians with strictly
local bounded-strength interactions. The Hamiltonians
in this class, associated with stabilizer error correcting
codes [20], have a peculiar property that isolated defects
cannot move further than a constant distance away with-
out creating other defects. For brevity, we shall refer
to this property (stated more formally below) as a no-

strings rule because it is closely connected to the absence
of logical string-like operators capable of moving the de-
fects. Let us point out that the first example of a 3D
spin Hamiltonian with TQO obeying the no-strings rule
has been found only quite recently by one of us [21]. This
example is very special and may not be realized in nature
with its precise form. However, it could be the case that
at least one model satisfying the no-strings rule can be
found in a laboratory.

We prove that any sequence of local errors creating an
isolated defect from the vacuum with no other defects
within distance R must cross an energy barrier at least
c logR for some constant c. The same bound applies to
creation of any isolated cluster of defects with a non-
trivial total topological charge. It shows that although
defects do not interact directly, their diffusive motion is
suppressed by the logarithmic energy barriers prevent-
ing the defects from spreading (the concept of a diffusive
motion must be used with care in our case because indi-
vidual defects can only move a constant distance away).

We also prove a similar logarithmic lower bound on
the energy barrier for implementing any logical opera-
tor. More precisely, we prove that any sequence of local
errors mapping a ground state to an orthogonal ground
state must cross the energy barrier at least c logL, where
L is the lattice size and c is some constant. For the
Hamiltonian discovered in [21] this bound is tight up to
a constant factor. Although the scaling of the energy bar-
rier is not as favorable as the one in the 4D toric code, we
point out that the energy barrier does not grow with the
lattice size at all for all previously studied TQO Hamil-
tonians in the 2D and 3D geometry. A naive estimate
of the storage time τ for a memory with an energy bar-
rier B operating at a temperature T can be made using
the Arrhenius law, namely, τ ∼ eB/T . Since in our case
B = c logL for some constant c, we arrive at τ ∼ Lc/T .
Although this ‘derivation’ gives only polynomial scaling
of τ , the degree of the polynomial can be made arbitrarily
large by choosing sufficiently low temperature.

It is worth mentioning that a 2D Hamiltonian with
TQO always have string-like logical operators [22, 23] and
thus 3 is the smallest spatial dimension for constructing
Hamiltonians obeying the no-strings rule. Indeed, it was
shown by Terhal and one of us [22] that for any 2D local
stabilizer-type Hamiltonians the energy barrier for im-
plementing at least one logical operator is constant. It
should also be noted that a 3D translation-invariant sta-
bilizer Hamiltonian with TQO can obey the no-strings

rule only if the ground state degeneracy is not invariant
under changing lattice dimensions [24, 25]. Let us now
state our main results more formally.
Stabilizer code Hamiltonians. We consider a reg-

ular D-dimensional cubic lattice Λ of linear size L with
periodic boundary conditions, that is, Λ = Z

D
L . Each

site u ∈ Λ is populated by a finite number of qubits. A
stabilizer Hamiltonian is defined as

H = −
M∑

a=1

Ga, (1)

where each term Ga is a multi-qubit Pauli operator (a
tensor product of I,X, Y, Z with an overall ±1 sign) and
different terms commute with each other. The abelian
group G generated by G1, . . . , GM is called a stabilizer

group of the code. Elements of G are called stabilizers.
We assume that each generator Ga acts non-trivially (by
X,Y or Z) only on a set of qubits located at vertices of an
elementary cube. It is allowed to have more than one gen-
erator per cube. Any short-range stabilizer Hamiltonian
can be written in this form after a coarse-graining of the
lattice. The Hamiltonian may or may not be translation-
invariant.
We assume that H is frustration-free, that is, ground

states ψ0 of H obey Ga ψ0 = ψ0 for all a. Consider
any multi-qubit Pauli operator E. A state ψ = E ψ0

is an excited eigenstate of H . Obviously, Ga ψ = ±ψ
where the sign depends on whether Ga commutes (plus)
or anticommutes (minus) with E. Any flipped generator
(Ga ψ = −ψ) will be referred to as a defect. An eigenstate
with m defects has energy 2m above the ground state.
For brevity, we use the term vacuum for any ground state
of H whenever its choice is not important. A Pauli oper-
ator E whose action on the vacuum creates no defects is
either a stabilizer (E ∈ G), or a logical operator (E /∈ G,
but E commutes with G). In the former case any ground
state of H is invariant under E. In the latter case E
maps some ground state of H to an orthogonal ground
state.
Topological order. Our definition of TQO depends

on a length scale Ltqo that must be bounded as Ltqo ≥
Lβ for some constant β > 0. Our first TQO condition
concerns ground states:

If a Pauli operator E creates no defects when applied

to the vacuum and its support can be enclosed by a

cube of linear size Ltqo, then E is a stabilizer, E ∈ G.

Our second TQO condition concerns excited states. A
cluster of defects S will be called neutral if it can be
created from the vacuum by a Pauli operator E whose
support is enclosed by a cube of linear size Ltqo without
creating any other defects. Otherwise we say that S is
a charged cluster. Given a region A ⊆ Λ we shall use
a notation Br(A) for the r-neighborhood of A, that is,
a set of all points that have distance at most r from
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A. Here and below we use l∞-distance on Z
D
L , i.e., the

distance between a pair of sites is the maximum of their
coordinate-wise distances. We shall need the following
condition saying that neutral clusters of defects can be
created from the vacuum locally.

Let S be a neutral cluster of defects and Cmin(S) be
the smallest cube that encloses S. Then S can be cre-

ated from the vacuum by a Pauli operator supported

on B1(Cmin(S)).

In the last condition B1(Cmin(S)) can be replaced by
Bρ(Cmin(S)) for any constant ρ if one performs a coarse-
graining of the lattice.
No-strings rule. Informally, the rule says that apply-

ing an operator with a ‘string-like’ support to the vacuum
cannot create charged defects at the end-points of the
string. Let us now define this property rigorously. Let
E be any Pauli operator whose support is enclosed by
a cube of linear size Ltqo and S be a cluster of defects
obtained by applying E to the vacuum. Let A1, A2 be
any pair of disjoint cubes of the same linear size ρ. We
shall say that E is a logical string segment with anchor

regions A1, A2 iff S is contained in the union A1 ∪ A2.
We will say that a logical string segment E has aspect

ratio α iff the distance between A1 and A2 is at least αρ.
A logical string segment E is called trivial iff the cluster
of defects contained inside any anchor region is neutral.

A stabilizer Hamiltonian obeys the no-strings rule iff

there exists a constant α such that all logical string

segments with aspect ratio greater than α are trivial.

We note that a 3D stabilizer code (Code 1) discovered
in [21] obeys our topological order conditions with Ltqo ∼
L and obeys the no-strings rule with α = 15.
Energy barrier. Let us consider a process of building

a logical operator P from local errors. It can be described
by an error path — a finite sequence of local Pauli errors
E1, . . . , ET such that P = ET · · ·E2E1. For simplicity
we shall assume that each local error Et is a single-qubit
Pauli operator X , Y , or Z. Applying this sequence of
errors to a ground state ψ0 generates a sequence of states
{ψ(t)}t=0,...,T , where ψ(0) = ψ0 and ψ(T ) = P ψ0 are
ground states of H , while the intermediate states ψ(t) =
Et · · ·E1 ψ0 are typically excited. We say that a logical
operator P has energy barrier ω iff for any error path
implementing P at least one of the intermediate states
ψ(t) has more than ω defects. Note that we do not impose
any restrictions on the length of the path T (as long as
it is finite). In particular, an error may be repeated in
the error path several times at different time steps. We
shall also consider an energy barrier for creating a cluster
of defects S from the vacuum. We will say that S has
energy barrier ω iff for any Pauli operator E that creates
S from the vacuum and for any error path implementing
E at least one of the intermediate states has more than
ω defects.

Our main results are the following theorems. Both
theorems apply to any stabilizer Hamiltonian Eq. (1) on
a D-dimensional lattice that obeys the topological order
condition and the no-strings rule.

Theorem 1. The energy barrier for any logical operator

is at least c logL, where L is the lattice size, and c is a

constant coefficient.

Theorem 2. Let S be a neutral cluster of defects con-

taining a charged cluster S′ ⊆ S of diameter r such that

there are no other defects within distance R from S′. If

r+R < Ltqo, then the energy barrier for creating S from

the vacuum is at least c logR, where c = O(1).

The constant c depends only on the spatial dimension D,
the constant α in the no-strings rule, and the constant
β in the bound Ltqo ≥ Lβ. The bounds on the energy
barrier are optimal up to a constant factor [26]. Below
we focus on proving Theorem 1. Proof of Theorem 2
requires only minor modifications, see [26] for details.

Proof of Theorem 1. A configuration of defects created
by applying a Pauli operator E to the vacuum will be
called a syndrome caused by E. The process of build-
ing up a logical operator P by a sequence of local er-
rors E1, . . . , ET can be described by a syndrome history

{S(t)}t=0,...,T . Here S(t) is the syndrome caused by the
product Et · · ·E1, that is, the partial implementation of
P up to a step t. The syndrome history starts and ends
with the vacuum, i.e., S(0) = S(T ) = ∅. Without loss
of generality all intermediate syndromes S(t) are non-
empty. For any integer p ≥ 0 define a level-p unit of
length as

ξ(p) = (10α)p, p = 0, 1, . . . .

Let S(t) be any non-empty syndrome. Recall that each
defect in S(t) can be associated with some elementary
cube of the lattice.

Definition 1. A syndrome S(t) is called sparse at level

p iff the set of elementary cubes occupied by S(t) can

be partitioned into a disjoint union of clusters such that

each cluster has diameter at most ξ(p) and any pair of

distinct clusters combined together has diameter larger

than ξ(p+ 1). Otherwise S(t) is called dense at level p.

For example, suppose all defects in S(t) occupy the
same elementary cube. Since an elementary cube has
diameter 1, such a syndrome S(t) is sparse at any level
p ≥ 0. If S(t) occupies a pair of adjacent cubes, S(t) is
sparse at any level p ≥ 1, and is dense at level p = 0.

Lemma 1. Suppose a non-empty syndrome S(t) is dense
at all levels q = 0, . . . , p. Then S(t) contains at least p+2
defects.
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Proof. Let C
(0)
1 , . . . , C

(0)
g be elementary cubes occupied

by S(t). Obviously, S(t) contains at least g defects. Since
S(t) is non-empty and dense at level 0, we have g ≥ 2 and

there exists a pair of cubes C
(0)
a , C

(0)
b such that the union

C
(0)
a ∪ C

(0)
b has diameter at most ξ(1). Combining the

pair C
(0)
a , C

(0)
b into a single cluster we obtain a partition

S(t) = C
(1)
1 ∪ . . . ∪ C

(1)
g−1 where each cluster C

(1)
a has

diameter at most ξ(1). Suppose S(t) is dense at level 1.

Then g ≥ 3 and there exists a pair of clusters C
(1)
a , C

(1)
b

such that the union C
(1)
a ∪C

(1)
b has diameter at most ξ(2).

Combining the pair C
(1)
a , C

(1)
b into a single cluster and

proceeding in the same way we arrive at g ≥ p+ 2.

Define a level-p syndrome history as a subsequence of
the original syndrome history {S(t)}t=0,...,T that includes
only those syndromes S(t) that are dense at all levels
q = 0, . . . , p − 1. The level-0 syndrome history includes
all syndromes S(t). The syndrome history starts and
ends with the vacuum (empty syndrome) at any level
p. Let S(t′) and S(t′′) be a consecutive pair of level-p
syndromes. We define a level-p error E connecting S(t′)
and S(t′′) as the product of all single-qubit errorsEj that
occurred between S(t′) and S(t′′). The following lemma
shows that E can be regarded as an approximately local
error on a coarse-grained lattice characterized by the unit
of length ξ(p). Let m be the maximum number of defects
in the syndrome history, such that any S(t) contains at
most m defects.

Lemma 2. Let S′ ≡ S(t′) and S′′ ≡ S(t′′) be a consec-

utive pair of syndromes in the level-p syndrome history.

Let E be the product of all errors Ej that occurred be-

tween S′ and S′′. If 4m(2 + ξ(p)) < Ltqo, then there

exists an error Ẽ supported on Bξ(p)(S
′ ∪ S′′) such that

EẼ is a stabilizer.

The proof of the lemma, presented in [26], uses in-
duction in the level p and relies crucially on the scale-
invariance of the no-strings rule. The latter asserts that
an isolated charged cluster belonging to some sparse
level-p syndrome cannot be moved by local errors further
than distance αξ(p) away without making the syndrome
dense. Any such movement can be accounted for by local
errors on the coarse-grained lattice with a unit of length
ξ(p + 1). As for isolated neutral clusters, they can be
created/annihilated locally in the beginning/end of each
sparse period of the syndrome history, see [26] for details.

Let pmax be the highest RG level, that is, the smallest
integer p such that a single level-p error E maps the vac-
uum to itself. We claim that pmax = Ω(logL). Indeed,
suppose that 4m(ξ(pmax) + 2) < Ltqo. Then we can ap-
ply Lemma 2 to the level-pmax syndrome history with
S′ = S′′ = ∅ (vacuum). Lemma 2 would imply Ẽ = I,
that is, E must be a stabilizer. On the other hand, E is
equivalent to a logical operator modulo stabilizers. Hence

we obtain a contradiction unless 4m(ξ(pmax)+2) ≥ Ltqo.
We can assume that the maximum number of defects is
m≪ logL (if not, there is nothing to prove). Since Ltqo

grows as a power of L, we conclude that pmax = Ω(logL).
The syndrome history must contain at least one syn-
drome S(t) which is dense at all levels q = 0, . . . , pmax−2
since otherwise pmax could not be the highest RG level.
Lemma 1 then implies that such syndrome S(t) contains
Ω(logL) defects proving Theorem 1.
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