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Motivated by recent experiments carried out by Spielman’s group at NIST [1, 2], we study a
general scheme for generating families of gauge fields, spanning the scalar, spin-orbit, and non-
abelian regimes. The NIST experiments, which impart momentum to bosons while changing their
spin state, can in principle realize all these. In the spin-orbit regime, we show that a Bose gas is a
spinor condensate made up of two non-orthogonal dressed spin states carrying different momenta.
As a result, its density shows a stripe structure with a contrast proportional to the overlap of the
dressed states, which can be made very pronounced by adjusting the experimental parameters.

The recent success of the NIST group [1, 2] in generat-
ing abelian gauge fields in ultracold atomic gases has cre-
ated exciting opportunities to simulate electronic trans-
port in solids using these highly configurable gases. Re-
cently, the NIST group has also reported the creation of
spin-orbit coupling in a pseudo spin- 1

2 Bose gas [3]. This
is a significant development in cold atom research. Not
only will this allow for the simulation of a wide array of
spin-orbit effects in solids, it will also provide opportu-
nities to study spin-orbit effects in bosons, giving rise to
a class of quantum many-body effects with no analog in
solids.

What is amazing is the simplicity of the experimental
setup. The key element consists of only a pair of lasers
and an external magnetic field. Moreover, going from the
previously studied abelian gauge fields [1, 2] to the spin-
orbit case [3] (as well as the non-abelian regime) requires
nothing more than turning down the laser power, showing
that all these regimes are continuously connected to each
other. In this paper, we show that in the presence of spin-
orbit interaction, and more generally in the presence of
non-abelian gauge fields [4–18], a spinor condensate will
develop a spontaneous stripe structure in each spin com-
ponent, reflecting a ground state made up of two non-
orthogonal dressed states with different momenta. De-
pending on interactions, this ground state can reduce to
a single dressed state. These momentum-carrying stripes
are the macroscopic bosonic counterpart of the spin-orbit
phenomena in fermions that are being actively studied in
electron physics today.

Since spin-orbit interactions are closely related to non-
abelian gauge fields, we shall first discuss a general
scheme for creating effective gauge fields that allow one
to go continuously from the abelian to spin-orbit, to non-
abelian regimes. We shall refer to this as the “general-
ized adiabatic” scheme. It works as follows: consider
the hamiltonian h = p2/2M + W (r) that operates on
an atom with internal degrees of freedom, such as al-
kali atoms with hyperfine spin F . W is a potential in
spin space that varies spatially with characteristic wave-
vector q. The energy scale for the spatial variation of
W is then εq = h̄2q2/2M . If W has a group of L states
(L < 2F + 1) at the bottom of its spectrum lying within

an energy range ∆E � εq and is well separated from all
other higher energy spin states by εq, then the low en-
ergy phenomena of the system can be described within
this reduced manifold of L states. By going into a frame
in this manifold that transforms away the spatial varia-
tions of the spin states, a gauge field emerges [19, 20].
The gauge field is abelian if L = 1. For L ≥ 2, a spin-
orbit interaction or non-abelian gauge field can emerge.
Thus, by moving the high energy states across εq into the
low energy manifold, one can increase the dimensionality
of this low energy manifold and create non-abelian gauge
fields with increasingly rich structure. It should be noted
that this is very different from the tripod scheme in most
theoretical proposals, which makes use of a set of dark
states sitting above a short-lived ground state of the sys-
tem [5]. In contrast, the generalized adiabatic scheme
uses the lowest energy states, thereby eliminating colli-
sional loss and hence, the intrinsic heating of the tripod
scheme.

Before proceeding, it is useful to note the unique fea-
tures of non-abelian gauge fields. In the abelian case,
a constant vector potential has no physical effect since
it can be gauged away. This is not true for the non-
abelian case, however, because of its non-commutativity
and a constant non-abelian vector potential will give rise
to physical effects. Moreover, non-abelian gauge fields
inevitably lead to spin-orbit coupling, so any potential
(such as a confining trap) that alters particle trajectories
also causes spin rotation. This immediately implies sig-
nificant differences between bosons and fermions. For
fermions, the Pauli principle means that any spin ef-
fects are the result of contributions from all occupied
states. In contrast, bosons will search for or even con-
struct (through interaction effects) an optimum (i.e., low-
est energy) spin state which will become macroscopically
occupied at low temperatures thanks to Bose statistics.
This Bose enhancement gives rise to gauge field effects
visible at the macroscopic level. The current experiments
at NIST already give a way to study macroscopic spin-
orbit effects.

(A) The NIST setup and the effective hamil-
tonian: The NIST setup consists of two counter propa-
gating lasers with frequency difference ω and momentum
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ẑ

m = 1

m = 0

m = −1

FIG. 1. Schematic of the experimental setup at NIST [3].
The Raman process consists of two lasers with wave vectors
kop + qx̂ and kop, frequencies ωop + ω and ωop impinging on
the atomic cloud. Atoms excited by the laser will have their
momenta increased by qx̂ while their spin projection along ŷ
is changed by 1, as shown in the energy diagram at top.

difference q directed along x̂ impinging on a spin F = 1
Bose condensate of 87Rb atoms. There is also a magnetic
field along ŷ with a field gradient. (See Figure 1). The
lasers induces a Raman transition in the atom, transfer-
ring linear momentum qx̂ to the Bose gas while increasing
the spin angular momentum by h̄ at the same time. A
similar scheme has been proposed earlier in Ref.[21]. The

single particle hamiltonian is h(t) = p2

2M + W (t), where

W (t) = −h̄ΩyFy+h̄λF 2
y − h̄ΩR

2 [ei(qx−ωt)(Fz+iFx)+h.c.],
where F is the spin-1 operator. h̄λ is the quadratic Zee-
man energy. h̄Ωy = h̄Ωo +Gy is the Zeeman energy pro-
duce by the magnetic field along ŷ. The Ωo term is due
to the constant magnetic field and the Gy term comes
from the field gradient. ΩR is the Rabi frequency asso-
ciated with the Raman process. In the frame rotating
in spin space about ŷ with frequency ω, the hamiltonian
becomes static, H = h(t = 0) + h̄ωFz, and is given by

H = p2

2M +W , with

W/h̄ = −ΩyFy + λF 2
y − ΩR(cosqxFz − sinqxFx) (1)

= e−iqxFy
(
−ΩyFy + λF 2

y − ΩRFz
)
eiqxFy (2)

and Ωy = Ωo − ω +Gy.
Eq.(2) shows that W has a very simple level structure

in the frame rotating in spin space along ŷ with angle qx.
For simplicity, we take F = 1 and G = 0. The following
cases are of particular interest:
(i) Abelian case: this occurs when ΩR � λ, εq/h̄, with ω
tuned close to Ωo so that Ωy ∼ 0. The ground state in the
rotating frame is the m = +1 state along ẑ, isolated from
the other two states (m = 0,−1 along ẑ) by ∼ h̄ΩR > εq.

(ii) Spin-orbit case: this occurs when λ� ΩR, εq, with ω
tuned closed to ω = Ωo−λ. In this case, the states m = 1
and m = 0 along ŷ lie at the bottom of the spectrum,
separated from the third state m = −1 by 2h̄λ > εq. We
shall from now on focus on this case.

Let ψ̂†m and φ̂†m be the operators that create a bo-
son with spin projection m along ŷ in the laboratory
frame and in the rotating frame in spin space; and

ψ̂m =
(
eiqxFy φ̂

)
m

= eiqxmφ̂m. Focusing on the lowest

two states φ̂m, m = 1, 0, the hamiltonian is

K̂ =

∫ [
φ̂†mHmnφ̂n +

1

2
n̂mgmnn̂n − (V − µ)n̂

]
(3)

where n̂m = φ̂†mφ̂m, n̂ =
∑
m n̂m, V = 1

2Mω2
T r2 is the

harmonic trap, µ is the chemical potential, gmn are inter-
actions between bosons in spin states m and n, g10 = g01,
and

Hmn =
h̄2

2M

[∇
i

+ x̂q

(
1 0
0 0

)]2

+ h̄

(
−Gy ΩR√

2
ΩR√

2
0

)
.

(4)
When G = 0, the solutions χ of the resulting Schrödinger
equation

Hmn(x)χn(x) = Eχm(x) (5)

have the following property that

χ′m(x) = eiγe−iqx(τ1)mnχ
∗
n(x), τ1 =

(
0 1
1 0

)
(6)

is also a solution, where γ is an arbitrary phase.
(B) Single particle ground state: for zero-field gra-

dient, G = 0, the momentum eigenstates are of the form

χ
(p)
m (x) = eipxχ̃m, χ̃ ≡ (uv ), and Eq.(5) becomes

h̄2

M

(
k2 +Q2

2
+ kQτ2 + `2τ1

)(
u
v

)
= Ep

(
u
v

)
, (7)

where we have defined

Q ≡ q/2, k ≡ p+Q. (8)

and, for later use, have expressed h̄ΩR in terms of the
wave-vector ` and angle θ:

`2

Q2
≡ MΩR

h̄
√

2Q2
=

√
2h̄ΩR
εq

≡ sinθ. (9)

The eigenvalues come in two branches, with energies

E1(0)(p) = h̄2

M

(
k2+Q2

2 + (−)
√

(kQ)2 + `4
)

(see Fig. 2).

The ground states are the minima of E0(p) at

p± = ±ko − q/2, ko =
√
Q2 − `4/Q2 = (q/2)cosθ,

(10)
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FIG. 2. The energy levels E0(p) and E1(p) as a function of
k ≡ p + q/2. The lower branch E0(p) has two degenerate
minima at k = ±k0, where k0 = (q/2) cos θ. The energy
difference between the lower and upper branch at ±k0 is εq =
h̄2q2/2m.

with energy

E0(p±) = − h̄2`4

2MQ2
= −1

2

(h̄ΩR)2

εq
≡ Eo. (11)

The energy of the upper branch at these momenta is
E1(p±) = εq − h̄2`4/(2MQ2), which is higher by εq. It is
worth noting that the value of the ground state energy is
not of the order −h̄ΩR, but a higher energy −(h̄ΩR)2/εq.
The wavefunctions at these degenerate ground states are

χ
(p±)
m (x) = eip±xχ̃

(p±)
m ,

χ̃(p+) =

(
isin θ2
cos θ2

)
, χ̃(p−) =

(
icos θ2
sin θ2

)
. (12)

Note that the states χ(p±)(x) are connected by Eq.(6)
with γ = π/2. They are orthogonal due to their differ-
ent momenta. The spin states, however, have non-zero
overlap, since

〈p+|p−〉 = χ̃(p+)†χ̃(p−) = sinθ. (13)

(C) Pseudo spin-1/2 spinor condensate: con-
densing in the dressed states |p(±)〉, the field opera-

tor, which admits the expansion φ̂m(x) =
∑
p χ

(p)
m (x)âp,

turns into a spinor field of the form

Φm(x) = A+χ
(p+)
m (x) +A−χ

(p−)
m (x). (14)

Because of the non-zero overlap, Eq.(13), the density
nm(x) = |Φm(x)|2 of each spin component will develop a
stripe structure. This can be seen by noting that the to-
tal density n(x) = n1(x)+n0(x) and the “magnetization”
m(x) = n1(x)− n0(x) are given by

n(x) = |A+|2 + |A−|2 + sinθ(A∗+A−e
−2ikox + c.c.) (15)

I

II

III

(p+, p−)

p+

p−

ααc

βc

β

−βc

FIG. 3. The phase diagram of pseudo spin 1/2 Bose gas: Re-
gion I is a superposition of two dressed state with momentum
p+ and p−, II and III are the single dressed states p+ and
p− respectively. α, β, αc, and βc are defined in text.

m(x) = −cosθ(|A+|2 − |A−|2). (16)

Note also that m(x) is independent of θ. Eq.(15) shows
that the contrast of the oscillation is set by the over-
lap, sinθ, whereas the wavelength of the stripe is π/ko =
2π/(qcosθ). Thus, both contrast and wavelength increase
with θ for θ < π/2.

The amplitudes A± are determined by minimizing the
Gross-Pitaevskii (GP) functional of Eq.(3), which is ob-

tained by replacing φ̂m(x) with the c-number Φm(x),
and n̂m(x) with nm(x) = |Φm(x)|2. Defining |A|2 =
|A+|2 + |A−|2, and a± ≡ A±/|A|, the GP functional
then reads,

K = (Eo − µ)|A|2 +
1

2
|A|4G(a+, a−), (17)

where |A|4G(a+, a−) =
∫
gmnnm(x)nn(x). Note that

while A+ and A− give distinct contributions to the ki-
netic energy due to their differing momenta p±, they are
coupled through interaction due to the overlap of their
spin functions. For example,

∫
n2

1(x) =
∫

[n2(x)+m2(x)+
2n(x)m(x)]/4, and the mixing of A+ and A− appears in∫
n2(x). To minimize K, we first minimize G(a+, a−)

with the constraint |a+|2 + |a−|2 = 1 to obtain the opti-
mal value (ao+, a

o
−) and

|A|2 = (µ− Eo)/Go, Go = G(ao+, a
o
−). (18)

Since the minimization is straightforward, we shall
only present the results, which are shown in Fig. 3. The
phase diagram depends on the parameters

α = g10/g, β = (g11−g00)/g, g = (g11 +g00)/2. (19)

and two numbers αc and βc derived from the laser pa-

rameter sinθ defined in Eq.(9). They are αc ≡ 2−tan2 θ
2+tan2 θ ,
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and βc = cosθ(2 − tan2θ). For g11, g00, g10 > 0, (as
in 87Rb), there are three possibilities: (I) Two dressed
states, with both A± 6= 0; single dressed state with (II)
χp+(x), (A− = 0), or (III) χp−(x), (A+ = 0).

Phase (I) occurs within the triangle shown in Fig.3,
bounded by the lines xyc±yxc = xcyc. The region exists
only when αc > 0, which means sinθ <

√
2/3. Other-

wise, interaction effect will drive the condensate into a
single dressed state. In phase (I), the amplitudes are

|ao±|2 =
1

2

(
1± β/ cos θ

2− 2α− (1 + α) tan2 θ

)
, (20)

and Go = G(ao+, a
o
+) = − β2

2(2−2α−(1+α) tan2 θ) +(1+α)(1+
1
2 sin2 θ). The relative phase between A+ and A−, how-
ever, cannot be determined within the GP approach.
This phase can be fixed by perturbations such as field
gradient the breaks the symmetry Eq.(6), or by quan-
tum fluctuation effects that go beyond GP. As discussed
before, the density of each of the spin component n1 and
n0 of this phase has a stripe structure. The case β = 0
(g11 = g00) is special. In that case, we have |A+| = |A−|
for α < αc. For α > αc, the two dressed states χ(p+) and
χ(p−) are degenerate.

In the presence of a harmonic trap V (r) = 1
2Mω2

T r2

with harmonic length d =
√
h̄/(Mω)� 2π/q, the wave-

length of the stripe, we can apply Thomas-Fermi ap-
proximation, and the condensate wavefunction is given
by Eq.(14), (18) and (20) with chemical potential µ in
Eq.(18) replaced by µ(r) = µ− V (r), i.e. for Phase (I),

Φm =
√

µ(r)−Eo

Go
[ao+e

ip+x

(
isin θ2
cos θ2

)
+ eiγao−e

ip−x

(
icos θ2
sin θ2

)
] (21)

The density profile n1(r) for the m = 1 spin component
along ŷ is shown in Fig. 4 for e.g., θ = 1

4π, N = 2.5×105.
Apart from the stripe structure, the presence of these

phases can be detected by measuring the displacement of
the atom cloud after expansion when the trap is turned
off. For the condensate with two dressed states, after
expansion, the cloud will separate into two atom clouds
moving with different momenta. In contrast, for the con-
densate in a single dressed state, the cloud will expand
in one direction, depending on the momentum p±.
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dzn1(x, y, z). The lower frame is ñ1(x, 0). The period of
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Öhberg,P. Phys.Rev.Lett. 100, 200405 (2008)
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