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Many biological processes are controlled by biomolecular switches which themselves are regulated
by various upstream chemical molecules (the input). Understanding how input noise affects the
output stochastic switching process is of significant interest in various biophysical systems like gene
regulation, chemosensing, and cell motility. Here, we propose an exactly solvable model where the
noisy input signal arises from a simple birth-death process and directly regulates the transition rates
of a downstream switch. We solve the joint master equations to analyze the statistical properties
of the output switching process. Our results suggest that the conventional wisdom of an additive
input-output noise rule fails to describe signaling systems containing a single molecular switch, and
instead, the most important effect of input noise is to effectively reduce the on rate of the switch.
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A broad range of biological processes are regulated by
certain switching systems where biochemical molecules
randomly flip between on and off states under the regula-
tion of other molecules (kinases, ligands, etc.). For exam-
ple, gene transcription depends on whether DNA promot-
ers are occupied by specific transcription factors [1, 2];
in eukaryotic chemotaxis, accurate sensing of chemical
gradients is achieved by using chemoreceptors to detect
spatial differences in chemical concentrations [3]. Very
often, the number of input molecules is quite small and
the stochasticity of the input signal, due to molecular
diffusion [4] or random births and deaths of molecules
[5, 6], is not negligible. This leads to a central ques-
tion: what is the role of input noise in a biochemical
switching system. Previous studies on this topic mostly
used the Langevin approach with a linear-noise approx-
imation and/or the fluctuation-dissipation theorem [6–
11]. These approaches assume that the fluctuations of
input signals are very small such that one can linearize
the input noise in the chemical Langevin equation. This
Taylor-expansion treatment typically, unless there are
correlations [12], leads to the widely accepted additive
noise rule, i.e., the output variance is the sum of the in-
trinsic variance of the switch and a contribution from the
extrinsic noise. It is often overlooked, however, that this
additive noise rule can fail in the case of a single switch
which has a strict upper bound on the variance.

Here, we study a simple two-state switch regulated by
a fluctuating chemical input. Our treatment does not
rely on the aforementioned approximations, but instead
on exact solutions of the master equation. To explicitly
capture the discreteness and randomness of the number
of input molecules, we model the input X(t) as generated
from a Markov birth-death process where the birth and
death rates are denoted by α and β, respectively (Fig.
1A). Clearly, the equilibrium distribution of the input
molecules, denoted by Cn, is Poisson with mean µ ≡ α/β
and variance σ2 ≡ α/β = µ, i.e.,

Cn(X(t→∞) = n) = µne−µ/n!. (1)

X(t) is nonnegative, mean-reverting, and also stationary,

with limit covariance, limt→∞〈X(t), X(t+s)〉 = σ2e−β|s|.
Thus, the relaxation time of X(t) is β−1. It is convenient
to choose a time scale by setting β = 1 so that both the
mean and variance are determined by α (i.e., α = µ =
σ2). Then, we have α = µ2/σ2, which can be interpreted
as the signal-to-noise ratio.

We assume that the number of input particles, X(t),
directly regulates the transition rates of a downstream
switch, the states of which in continuous time consti-
tute the output process, Y (t). For the simplest reaction
scheme (Fig. 1A), the rate for the molecular switch to
turn on is given by konX(t) and the rate for it to turn off
is koff . Let Pn(t) (and Qn(t)) be the probability to find
the switch in the on (and off) state together with exactly
n input molecules at time t. Since the input birth-death
dynamics is independent of the switch states, we must
have Pn +Qn = Cn. Although Y (t) alone is not Marko-
vian, the joint process (X(t), Y (t)) is. We can write down
the joint master equations for Pn and Qn as

dPn
dt

= konnQn − koffPn + αPn−1 − αPn
+(n+ 1)Pn+1 − nPn, (2)

dQn
dt

= koffPn − konnQn + αQn−1 − αQn
+(n+ 1)Qn+1 − nQn. (3)

In equilibrium, from Qn ≡ Cn − Pn and Eq. (2), we get

(konn+koff +α+n)Pn−αPn−1− (n+1)Pn+1 = konnCn,
(4)

which reduces to P1 = (koff + α)P0 at n = 0. Thus, if
we find the solution for P0, the expression of P1 imme-
diately follows and the general solution for Pn is easily
determined by Eq. (4). We introduce the generating
function, G(z) =

∑∞
n=0 z

nPn, to transform Eq. (4) into

(kon+1)zG′+(koff+α)G−αzG−G′ = konαze
α(z−1), (5)

which contains a regular (power-law) singular point at
zs ≡ (kon + 1)−1, so that generically,

G(z) ∼ (z − zs)−λ, λ ≡ zs(koff + α− αzs). (6)
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Choosing the boundary condition to eliminate the possi-
ble singularity at zs, we find an integral solution:

G(z) =

∫ z

zs

konαe
−αzsx

x− zs

∣∣∣∣x− zsz − zs

∣∣∣∣h exp

(
konαx+ αz

kon + 1

)
dx

(7)
where h ≡ z2

s(konkoff + konα + koff). In particular, this
directly gives P0 = G(z = 0). Moreover, the equilibrium
probability to find the switch in the on state is given by
Pon =

∑∞
n=0 Pn = G(z = 1), which we will examine for

different limits later on.
If the input is fixed at a constant level (i.e. X(t) = α),

the output Y (t) is clearly a two-state Markov (or random
telegraph) process with the forward rate, K+ ≡ konα,
and the backward rate, K− ≡ koff . Since koff is indepen-
dent of X(t), the input noise will only affect the chance
for the switch to turn on. One can calculate the mean
waiting time, τn, for the switch to turn on given that it
starts from being off with n particles initially. We first
write the backward Kolmogorov equation for ρn(t), which
denotes the probability density for the switch (starting
with n particles) to exit the off state at time t:

ρn(t) = [1− (α+ n+ konn) dt] ρn(t− dt)
+ αρn+1(t− dt)dt+ nρn−1(t− dt)dt+ konnδ(t),

where the first term represents the probability of nothing
happening so that the exit has to be at t−dt, the second
the probability that there is currently a birth so that the
exit has to be at t − dt from the n + 1 particle state,
the third the probability that there is a death, and the
last term represents the boundary condition using the
Dirac delta function. This equation can be expanded
and reorganized to the following differential equation,

dρn
dt

= − (α+ n+ konn) ρn +αρn+1 + nρn−1 + konnδ(t).

(8)
To calculate the mean first passage time, we multiply
both sides of Eq. (8) by t and integrate over all t, yielding

(α+ n+ konn) τn = ατn+1 + nτn−1 + 1. (9)

By defining fn ≡ τnαn/n!, Eq. (9) can be simplified to

(konn+ n+ α) fn − (n+ 1)fn+1 − αfn−1 = αn/n! (10)

which looks quite similar to Eq. (4) and can be trans-
formed into a differential equation by introducing F (z) =∑∞
n=0 z

nfn. The solution is immediate:

F (z) =

∫ z

zs

zs
x− zs

∣∣∣∣x− zsz − zs

∣∣∣∣z2skonα exp

(
konαx+ αz

kon + 1

)
dx.

(11)
The mean waiting time in equilibrium for the switch to
turn on is τ =

∑
n τnCn =

∑
n fne

−α = F (1)e−α or

τ =

∫ 1

zs

e−αzs
x− zs

(
x− zs
1− zs

)z2skonα
exp

(
konαx+ α

kon + 1

)
dx.

(12)
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FIG. 1: (color online). (A) Schematic representation of our
model. (B) P (τ > t) versus t, with fixed α = 1 and β = 1 but
different kon and koff . Symbols represent simulation results,

while lines denote P (τ > t) = exp(−k̃onαt). (C) σ̃2
Y − σ2

Y

versus 1/α from theory, where we choose β = 1, kon = 1, and

different values of koff . (D) T̃Y − TY versus 1/α from theory,
for β = 1, kon = 0.1, and different koff .

In the slow switch limit (konα � β = 1), we can
evaluate the integral of Eq. (12) by expanding its ex-
ponential term around konα. To leading order, this gives
τ ≈ (zskonα)−1, which is obviously larger than the av-
erage time, K−1

+ = (konα)−1, for the on transition in
the constant input model. Thus, for our noisy input

model, we can define an effective on rate, k̃on ≡ zskon.
Correspondingly, we can define an effective forward rate

K̃+ ≡ k̃onα which, in terms of K+, can be written as:

K̃+ ≡ zsK+ =
αK+

α+K+
=

(
1

α
+

1

K+

)−1

< K+. (13)

To analyze the effect of input noise, we vary α and simul-
taneously fix the forward rate K+ = konα such that the
mean on-state occupancy for the constant input model,
K+/(K− + K+), remains constant. In contrast, the
mean on-state occupancy for our noisy input model is

K̃+/(K− + K̃+) which is less than K+/(K− + K+) by
Eq. (13). This means that the input noise will effec-
tively suppress the on state by prolonging the average
time for the switch to turn on. The larger the noise,
the more the suppression. Our Monte-Carlo simulations
reveal that the switch’s off-state residence times (τ) are
still, to good approximation, distributed exponentially,

P (τ > t) ≈ exp(−k̃onαt), as shown in Fig. 1B. Thus,
Y (t) in this case can be well approximated as a two-state

Markov process with transition rates k̃onα and koff . Like-
wise, we can evaluate Pon = G(1) by Taylor expansion in
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this slow switch limit, yielding

Pon ≈
konα

konkoff + konα+ koff
=

k̃onα

k̃onα+ koff

, (14)

consistent with the result τ ≈ 1/(k̃onα). So the variance

of Y (t) is σ̃2
Y = Pon(1 − Pon) ≈ k̃onαkoff/(k̃onα + koff)2.

In contrast, the output variance for the constant-input
model is σ2

Y = konαkoff/(konα + koff)2. Their difference
σ̃2
Y − σ2

Y is plotted as a function of α−1 for fixed kon in
Fig. 1C. For small noise (α = µ2/σ2 � 1), we find

σ̃2
Y −σ2

Y ≈
koff [konα− 2koff(2 + kon)]

konα2
+O

(
1

α3

)
. (15)

Eq. (15) shows that the input noise contributes in a non-
additive way to the output variance [13]; the contribution
can be negative when α < 2koff(1+2k−1

on ). This seemingly
surprising result has a simple explanation: a two-state
switch at any moment is just a Bernoulli random variable
and hence its variance is strictly upper bounded by one
quarter. From Eq. (14) and Fig. 1B, one can see that
the net effect of input noise is to reduce the on rate from

kon to k̃on. This turns out to be a general feature for
any two-state (single) switch system, no matter how the
input process is defined or whether the switch exhibits
an ultra-sensitive response through cooperativity. We
will elaborate on this point elsewhere. Returning to our
noisy input model, the output autocorrelation time is

T̃Y ≈ (k̃onα+koff)−1, which is obviously larger than TY ≡
(konα + koff)−1, the output autocorrelation time for the
constant-input model. In the limit α� koff/kon, we find

that T̃Y − TY ≈ α−1 + O(α−2). So T̃Y increases with
the relative level of input noise (α−1 = σ2/µ2) when the
mean of X is much larger than the dissociation constant
Kd ≡ koff/kon; see Fig. 1D. Consider an integration of
the output signal Y (t) over a time window T (assuming
T � TY ). The output noise after temporal averaging is:

Var

(
1

T

∫ T

0

Y (t)dt

)
' 2T̃Y

T
σ̃2
Y , (16)

which may still decrease with the relative level of input
noise α−1, just as σ̃2

Y does (Fig. 1C). All the above results
show that the additive noise rule is an incomplete charac-
terization of the input-output noise relationship for a sin-
gle switch system. Finally, we calculate the mean number
of particles given that the switch is on,

Non =

∑
n nPn∑
n Pn

=
G′(1)

G(1)
= α

(
1

Pon
− koff

konα

)
. (17)

Using our result for Pon in the slow switch limit, we get

Non ≈ α
(

1 +
koff

α

)
= α+ koff > α. (18)

Thus, input noise can increase Non significantly if koff is
relatively large. The average number of particles given

t

∆t

Sa
m

pl
e 

A
C

F 
of

 Y
(t)

A B

C

 P
(τ

 >
 t)

Lag

Sa
m

pl
e 

A
ut

oc
or

re
la

tio
n

0 0.5 1 1.5

10 −4

10−3

10−2

10−1

100

 

 

Simulation

exp(−kon t)

exp(−kon t) 
~

D
10−5

5 10 15 20 25
−0.05

0

0.05

0.1

0.15

0.2
Sample Autocorrelation Function (ACF)                       

for the Sequence of Off−State                    
Residence Times                      

1

0 100 200 300 400 500
10 −2

10 −1

10 0

 

 

Sample ACF of Y(t)

exp[  (kon +koff)    ]− ∆t

0 10 20 300

0.01

0.02

0.03

0.04

0.05

0.06

0.07

n

P n  
 a

nd
   

Q
n

 

 

Pn ,  Numerical

Pn ,  Monte Carlo

Qn , Numerical

Qn , Monte Carlo

α

α
α

FIG. 2: (color online). We choose α = 10, β = 1, kon = 1, and
koff = 10. (A) Sample ACF of the sequence of the off-state
residence times. (B) Distribution of the off-state residence
times. (C) Sample ACF of Y (t). (D) Pn and Qn versus n.

that the switch is off, denoted by Noff , is found as well:

Noff =

∑
n nQn∑
nQn

=
µ−G′(1)

1−G(1)
=
koff

kon

Pon

1− Pon
, (19)

which, in the slow switch limit, gives

Noff ≈ Kd
k̃onα

koff
= zsα =

α

1 + kon
< α. (20)

Thus, we have Noff < Non in general.
In the fast switch limit (konα � β = 1), the approxi-

mate expression for Eq. (12) is found to be

τ ≈ e−k̃onα

k̃onα
+
e−k̃onα

kon + 1

1 +

∞∑
j=1

(k̃onα)j

j · j!

 . (21)

For fixed α and kon → ∞, we have k̃on → 1 and hence
τ → e−α/α which is just the time to leave the n = 0 state
times the probability of being in the n = 0 state. Looking
at the maximal noise limit (α � 1), we can restrict our
attention to n = 0 and n = 1. This results in a simple
Markov chain model where one can easily calculate,

P0 ≈
konα

k2
off + koff + konα+ koffkon

, (22)

such that the overall probability to find the switch on is

Pon ≈ P0 + P1 ≈
(koff + α+ 1)konα

k2
off + koff + konα+ koffkon

. (23)
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Unlike the case of a slow switch, the successive off-state
residence times are slightly correlated with each other
(Fig. 2A), as a natural result of the temporal corre-
lation in the input process. The distribution of these
off-state residence times, P (τ), is not exponential (Fig.
2B), especially at the head, although its tail decays ex-

ponentially at the rate k̃onα. In Fig. 2C, we draw the
sample autocorrelation function (ACF) for the simulated
output path. Clearly, the ACF of Y (t) exhibits a much
longer tail than what one expects from the constant input
model, demonstrating a long-term memory in Y (t). All
the above results (Fig. 2A-C) show that the output pro-
cess is strongly non-Markovian in the fast switch limit.
As a last illustration of the interdependence of input and
output, we plot in Fig. 2D the equilibrium conditional
distributions, Pn and Qn, which are obtained either di-
rectly by running Monte-Carlo simulations or indirectly
by numerically evaluating Eq. (7) and applying Eq. (4).
Clearly, Fig. 2D shows Noff < Non.

Our results may have broad biological implications.
The effects of input noise on the output may be quite dif-
ferent, depending on the input relaxation time β−1 com-
pared to the typical switching time scale TY . The rate β
can represent either the degradation of input particles or
molecular diffusion which removes input particles from
a particular space for chemical reaction. If molecular
diffusion is the biophysical basis for β, then faster diffu-
sion will make the input noise less appreciable, consistent
with the Berg-Purcell formula for concentration sensing
limits [4, 11, 14, 15]. Many biological processes may be
classified into this scenario where input fluctuations are
of little impact. For example, switching of DNA pro-
moters usually occurs at a time scale much longer than

the characteristic diffusion time of transcription factors,
providing a temporal averaging opportunity to suppress
the input noise. Eukaryotic gradient sensing is another
example where the chemoattractant diffuses so fast that
we can ignore the input diffusive noise when considering
cellular gradient sensing capacities [14, 16]. Nonethe-
less, there exist biological cases where the input relaxes
much slower than the biochemical switch flips its states.
Take for example the bacterial flagellar motors which ro-
tate either clockwise or counterclockwise for chemotactic
movements. The probability of clockwise motor spinning
depends sharply on the concentration of CheY-P in E.
coli [17]. The correlation time of the input CheY-P level
is dominated by slow methylation kinetics and measures
10 ∼ 30 seconds [18]. This is much longer than the typ-
ical switching time of the flagellar motors which is ap-
proximately 1 second [17, 18]. Therefore, input noise in
this system is expected to have interesting effects on the
motor switching statistics, as experimentally revealed in
[17] and theoretically explored in [18].

In summary, we have studied a solvable stochastic
model to examine how input fluctuations affect a simple
biochemical switch. Our results show that the presence
of input noise does not necessarily increase the output
variance. It does however act to suppress the on state.
We also demonstrate that the presence of memory ef-
fects can induce non-exponential statistics in the output
switching process. It is interesting to extend our current
model by incorporating other effects such as feedbacks
and cooperativity. Work in this direction is underway.
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