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The negatively charged nitrogen-vacancy (NV−) center in diamond is considered as one of the
most promising solid state systems for quantum information applications. Excited states of the
NV− center play a center role in the proposed applications. Using a combination of first-principles
calculations and vibronic interaction model analysis, we establish the presence of a dynamic Jahn-
Teller (JT) effect in the 3E excited state. The calculated temperature-dependent dephasing rate for
the zero phonon line as well as the splitting of the first two vibronic states are in good agreement
with experiment.

An NV center in diamond is formed by an N substitu-
tion and a nearest neighbor vacancy, which can capture
an extra electron to form an NV−. The NV− centers in
diamond, with their unique spin and optical properties,
have emerged as a promising solid system for studying
spin-related phenomena [1]. The local spin states of the
NV− center can be accessed and manipulated optically
at a single-site level [2], making it suitable for quantum
information applications [3–8]. The ground state of the
NV− center in diamond is a spin triplet with an elec-
tronic configuration (a2

1
e2)[3A2] as shown in Fig. 1. The

electron in the minority spin a1 state can be optically
excited to the unoccupied e state, forming a spin triplet
excited state 3E with a zero phonon excitation energy of
1.945 eV [9]. The excited state is orbitally degenerate and
should experience either static or dynamic Jahn-Teller
(JT) effects [10]. More precisely, the orbitally degenerate
electronic state (E) will couple with a doubly degenerate
(e) vibrational mode, resulting in an E ⊗ e JT system.

The dynamics of the excited state will be strongly af-
fected by the JT instability. For example, a recent mea-
surement [11] of the temperature dependence of the op-
tical transition linewidth and excited states population
relaxation of a single NV− center suggests that the dy-
namic JT effect is the dominant mechanism for the op-
tical dephasing at low temperatures. In addition, both
the spin-orbit interaction [12] and the system’s response
to external perturbations (e.g., electric field and stress)
will be significantly reduced (known as vibronic reduc-
tion or the Ham effect [13]) in the presence of the JT
vibronic coupling. Since the 3E excited state plays a
central role in the optical initialization and readout of
the spin states [14] and in the use of the NV− center
as a single photon source [3, 15], it is very important to
understand the JT effect in this system. Recently, using
the local vibration modes of the NV− center in diamond,
possible consequences of the JT vibronic coupling on the
optical adsorption process is discussed using symmetry
analysis [18]. The stiff diamond lattice, however, makes
the JT energy to be rather small. As a result, although
the JT effect has been studied extensively for some impu-
rity centers in oxides [16], it has been a challenge to study

the JT effect in diamond [17]. Establishing the JT pa-
rameters is of critical importance for understanding the
nature of the JT instability (i.e., static or dynamic) in
this system. In this work, we use a quadratic E ⊗ e vi-
bronic interaction model to analyze the numerical results
obtained from first-principles calculations. We then cal-
culate the dephasing rate for the zero phonon line (ZPL)
as well as the splitting of the first two vibronic states.
Our results compare well with experiment.

FIG. 1: (a) Band structure of the ground state of the NV−

center in diamond. (b) Schematic one electron energy levels
of the ground state (3A2). (c) Schematic one electron energy
levels of the excited state (3E).

Within the quadratic E⊗e JT vibronic model [19], the
splitting of the doubly degenerate electronic state under
the influence of an e-type distortion is governed by the
Hamiltonian

Hel(Qx, Qy) = E0 +
K
2
(Q2

x +Q2
y)σz + F (Qxσz −Qyσx)

+G[(Q2
x −Q2

y)σz + 2QxQyσx)], (1)

where σx and σz are Pauli matrices, E0 is the energy of
the degenerate electronic state at Qx = Qy = 0, Qx and
Qy are the displacement vectors from the C3v structure as
shown in Fig. 2(a). The three vibronic constants are: K,
the elastic force constant; F , the linear vibronic constant;
and G, the quadratic vibronic constant. In polar coor-
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dinates with ρ =
√

(Q2
x +Q2

y) and φ = arctan(Qy/Qx),

the solution for Eq. 1 yields two sheets of the adiabatic
potential energy surface (APES) [19]:

ǫ(ρ, φ) =
1

2
Kρ2 ± ρ[F 2 +G2ρ2 + 2FGρcos(3φ)]1/2. (2)

If the quadratic coupling G = 0, the lower sheet of
the APES has the form of a surface of revolution often
called the “Mexican hat”. For a non zero quadratic cou-
pling (G 6= 0), three minima develop along the trough of
the “Mexican hat” with a displacement ρ0 as shown in
Fig. 2(b). These energy minima have an energy that is
EJT lower than the undistorted structure and are sepa-
rated by an energy barrier δ.
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FIG. 2: (a) Three normal modes of a structure with the
C3v symmetry: totally symmetric displacement mode, Qs (a1

type) and degenerate Qx and Qy modes (e type). (b) The
adiabatic potential energy surface for the NV− center in dia-
mond.

In order to obtain the numerical parameters in the
quadratic E ⊗ e vibronic model, we carry out density
functional theory (DFT) [20, 21] based first-principles
electronic structure calculations using the QUANTUM
ESPRESSO [22] package. The generalized gradient ap-
proximation of Perdew, Burke, and Ernzerhof [23] is
used for the exchange and correlation terms. Electron-
ion interactions are described by ultrasoft pseudopoten-
tials [24]. The plane wave basis has an energy cutoff of
50Ry to ensure the convergence of the calculations.
The electronic structure calculations for the NV− cen-

ter are carried out using a 512-atom supercell structure.
We first perform a structural relaxation to obtain the
ground state structure. Substantial local relaxation is
observed. For example, the volume of the tetrahedron

formed by the substitutional nitrogen and three carbon
surrounding the vacancy expands by about 20% due to
the broken bonds around the vacancy and the formation
of shorter N−C bonds (1.47 Å). The C−C bonds near
the vacancy site shrink by about 3% compared with the
ideal value. As mentioned earlier, the ground state of
the NV− center has a C3v symmetry with an electronic
configuration (a2

1
e2)[3A2]. The calculated spin-resolved

band structure [Fig. 1(a)] shows the nearly dispersion-
less in-gap one electron defect states (a1 and e), indicat-
ing that the interaction between periodic images of the
defect is negligible.

The excited state 3E is obtained by a spin conserving
excitation of an electron from a↓

1
to e↓ as shown schemat-

ically in Fig. 1(c). As mentioned above, the orbitally de-
generate excited state will couple with the e-type local
vibration modes (LVM) Qx and Qy [Fig. 2(a)], giving rise
to a classic E ⊗ e JT system [19]. The first step towards
characterizing the JT effect is to calculate the APES [19]
for the excited state. This is done by carrying out con-
strained DFT calculations. Figure 2(b) shows the calcu-
lated APES for the excited state; the APES is plotted
with respect to the two orthogonal e-type displacement
modes Qx and Qy. Three equivalent local minima are
found near the C3v symmetric point with a JT stabiliza-
tion energy (EJT = Emin − EC3v

) of 25meV. The local
minima are separated by an energy barrier δ of 10meV.
In these lower energy configurations, atoms near the de-
fect center distort significantly from their positions in
the C3v configuration. The three carbon atoms near the
vacancy (labeled C1, C2, and C3) form an equilateral
triangle in the undistorted structure, which becomes an
obtuse isosceles triangle in the distorted structure. The
C1−C2, C2−C3, and C3−C1 distances are changed by
−0.72%, +0.85% and −0.72%, respectively, relative to
the undistorted carbon-carbon distances.

It should be pointed out that the distortion to the ideal
structure with a C3v symmetry is not limited to the three
carbon atoms near the vacancy site. The distortion is a
collective displacement of all atoms involved in the e-type
LVM with the Qx (or Qy) symmetry. Figure 3 shows the
displacement vector associated with one of the local min-
ima, which clearly shows the Qy symmetry of distortion.
With these first-principles results at hand, we now an-

alyze the JT effects in this system in more details. First,
the JT parameters ρ0 (the distortion magnitude), EJT

(the JT stabilization energy), and δ (the barrier between
local minima) are related to the vibronic coupling con-
stants defined in Eq. 1 as follows: ρ0 = F/(K − 2G),
EJT = F 2/2(K − 2G), and δ = 4EJTG/(K + 2G). Us-
ing the parameters obtained from first-principles calcu-
lations (ρ0 = 0.068 Å, EJT = 25meV, and δ = 10meV),
we find the corresponding vibronic coupling constants
F = −0.74 eV/Å, G = 1.76 eV/Å2, andK = 14.5 eV/Å2.
Before we can proceed further to discuss the dynam-

ical aspect of the 3E excited state, we need to evaluate
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FIG. 3: Displacement vector associated with one of the local
minima. Only atoms near the NV center are shown for clarity.
Grey is for the carbons near the vacancy, yellow is for the
other carbons, and blue is for nitrogen.

another important quantity, namely, the phonon energy
of the LVM involved. Unfortunately, it is not practical to
calculate the energy of the LVM of a JT system directly
using standard phonon calculation techniques. This is
because the system is intrinsically unstable at the de-
generate point. We can, however, estimate this phonon
energy using the diagonal quadratic constant K men-
tioned above, which gives an energy (~ω) for the LVM
of 71meV. This energy is also very close to the energy
(65meV) of the same LVM of the ground state.

Although an exact solution to the coupled vibronic
problem is still out of reach, with these results at hand,
we can now make a few observations regarding the na-
ture of the JT effect in this system. First, the vi-
bronic coupling in this system is weak (but not very
weak) as measured by the dimensionless coupling con-
stant λ = EJT /~ω = 0.35. [The coupling is considered
to be weak if λ ≪ 1 (strong if λ ≫ 1) [19].] Second, since
the shallow energy minima are separated by an energy
barrier ( 10 meV) that is much smaller than the phonon
energy, ~ω = 71 meV, the vibrational states (even the
ground state) of the system cannot be localized in one
of the minima. If we neglect the quadratic coupling con-
stant G, the low vibrational states of the system involve
radial vibration and free rotation of the distorted config-
uration along the bottom of the trough of the “Mexican
hat” potential well. In the presence of the quadratic cou-
pling G, however, this internal rotation is hindered.

An important parameter for understanding the dy-
namics of a JT system is the so-called tunneling splitting
(called 3Γ in the case of E ⊗ e JT system) [27]. The
idea is that, insofar as the lowest vibronic states are con-
cerned, the local vibrational wave functions associated
with the three energy minima in the lower sheet of the
APES [Fig. 2(b)] can be used as the zeroth-order wave
functions for subsequent perturbation treatments. The
tunneling between the local minima results in a splitting
(3Γ) between the vibronic E-type and A-type states. If

the system has deep energy minima that are separated
by a high energy barrier (i.e., δ ≥ ~ω), the tunneling
effect is weak and the system can be regarded as being
trapped in the one of the local minima with occasional
tunneling between minima. The tunnel rate is related to
the tunneling splitting 3Γ.
However, as discussed above, the energy barrier (δ ∼

10meV) in this system is small. Strictly speaking, the
concept of occasional tunneling between localized vibra-
tion states is not valid here. The dynamics of the ground
state of the system is better described by a hindered in-
ternal rotation. Nevertheless, we can still use the energy
separation between the lowest energy (E-type) vibronic
state and the first excited state (A-type) as a measure
of the degree of the localization (or delocalization) of the
vibrational states. In order to obtain the full vibronic
spectrum, we diagonalize the vibronic Hamiltonian

HJT = Hel(Qx, Qy)− (~2/2M)(∂2/∂Q2

x + ∂2/∂Q2

y) (3)

within the subspace spanned by the electronic dou-
blet and the vibrational states of the simple harmonic
oscillator of the unperturbed system, i.e., Ψj,nx,ny

=
φj(~r)χnx

(Qx)χny
(Qy). Here φj (j = 1, 2) is the elec-

tronic wave function and χnx
(χny

) is the vibrational
wave function associated with the Qx (Qy) LVM. The
Hamiltonian is diagonalized with the vibrational quan-
tum numbers nx and ny up to 20. The results for the
lowest few vibronic states are shown in Table I. The
splitting between the E-type vibronic ground state and
the A-type first excited state is 35 meV. This is signifi-
cantly larger than the energy barrier (10 meV) between
the energy minima, indicating that this is a dynamic JT
system. It is interesting to mention that the vibronic
ground state of the coupled (distorted) system has the
same E symmetry as the ground state of the undistorted
system (i.e., the reference system at ~Q = 0). Table I
also lists the lowest few vibronic levels calculated with-
out including the quadratic coupling (i.e., with G = 0).
Note that in the absence of the quadratic coupling, the
vibronic states with the A1 and A2 symmetry are acci-
dentally degenerate, as it was shown by Longuet-Higgins
et al. [28].

TABLE I: Calculated vibronic levels.

Symmetry Energy(G 6= 0) Energy(G = 0)
(meV) (meV)

E 36.7 39.3
A1 71.7 91.0
A2 103.8 91.0
E 114.8 127.8
E 143.7 146.6
A1 166.1 197.6
E 183.7 192.8
A2 199.6 197.6

Finally, we discuss a few important and experimentally
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measurable consequences of the JT effects in this system.
As mentioned earlier, a recent measurement [11] clearly
suggested that the dephasing of the ZPL of the NV−

center at low temperatures is dominated by the coupling
between the electronic E doublet and the e phonons. The
measured T 5 dependence of the linewidth of the ZPL was
explained by a two-phonon Raman process (i.e., a second-
order perturbation treatment of a linear JT Hamilto-
nian), which results in a dephasing rate (see also Eq.
(2) of Fu et al. [11])

W =
2π

~

∫

~ωD

0

dEn(n+ 1)ρ2(E)
V 4(E)

E2
, (4)

where E = ~ω is the phonon energy, n is the phonon
occupation number, ρ is the phonon density of states
(DOS) associated with the ex or the ey phonon, V (E)
is the linear coupling constant, and ~ωD is an appropri-
ate cutoff energy (the Debye energy) for this problem.
The coupling constant V (E) defined here is related to
the linear coupling constant F defined earlier through
V = F

√

~/2Mω, where M is the mass of the carbon
atom. Note that the Debye energy used here must not be
confused with those defined in other contexts. Using the
Debye model for the phonon DOS and assuming that the
coupling constant scales as

√
E [11], i.e., V (E) = C

√
E,

the above integral can be simplified:

W =
8π

~

(

Ω

2π2~3v3s

)2

C4(kBT )
5I4(

~ωD

kBT
), (5)

where I4(
~ωD

kBT ) =
∫

~ωD
kBT

0
dx[x4ex/(ex − 1)2] is the De-

bye integral, vs = 1.2 × 104m/s is the sound velocity
in diamond, Ω is the volume of the diamond unit cell.
We use the calculated coupling constant F = 0.74 eV/Å
at ~ω0 ≈ 70meV to obtain the coupling constant C
through C

√
~ω0 = F

√

~/2Mω0. At the low temperature
limit, the Debye integral I4(∞) = 4π4/25. Finally, we
have, for the low temperature limit, W = 38.2T 5(s−1).
This compares surprisingly well with the experimental
result W = 0.5c2rT

5 = (36.8 ± 2.0)T 5(s−1) [11]. Us-
ing an appropriate cutoff energy, we can calculate the
full temperature-dependent dephasing rate. Figure 4
compares the measured and the calculated temperature-
dependent linewidth γ(T ) = γ0 + 2W (T ) (rescaled by
a factor of 1/2π) using ~ωD = 50meV and γ0 = 2π ×
16.2MHz taken from Ref. [11].
Another experimental signature of the JT effect is the

splitting of the first vibrational peak of the absorption
spectra of the NV− center [9]. The calculated splitting
of the first two bright vibronic excited states (A2 and E)
is 11 meV (Table I), this is very close to the experimen-
tal value of about 10 meV [9]. The position of the first
vibration peak is about 60meV from the ZPL [9], which
again agrees well with the calculated value of 67meV.
The transition to the A2 state is allowed for photon po-
larization parallel to the symmetry axis whereas for the

FIG. 4: Comparison between the calculated and the mea-
sured linewidth of the ZPL of the NV− center in diamond.
(a) Experimental results and the T5 fitting are taken from
Ref. [11].

perpendicular polarization, transitions to E states are
allowed. We caution that our model cannot reproduce
faithfully results for higher vibronic states since coupling
to other phonon modes (e.g., a1) will greatly modify high
vibronic states.
In conclusion, we use a quadratic E⊗e vibronic model

to understand the JT effect in the 3E excited state of the
NV− center in diamond. The vibronic coupling param-
eters are obtained from DFT-based first-principles elec-
tronic structure calculations. Diagonalization of the cou-
pled vibronic Hamiltonian gives the vibronic spectrum
with a splitting (3Γ) between the vibronic ground state
and the first excited state of about 35 meV, resulting in
a barrier to tunneling splitting ratio, δ/3Γ, of 0.29. Our
results indicate that the 3E excited state of the NV− cen-
ter in diamond is a dynamic JT system. The computed
dephasing rate for the ZPL as well as the splitting of the
first two vibronic states agree well with experiment.
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