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We show, using an ab initio approach based on Quantum Monte Carlo technique, that the pseu-
dogap regime emerges in ultracold Fermi gases close to the unitary point. We locate the onset of
this regime at a value of the interaction strength corresponding to (kF a)

−1
≈ −0.05 (a - scattering

length). We determine the evolution of the gap as a function of temperature and interaction strength
in the Fermi gas around the unitary limit and show that our results exhibit a remarkable agreement
with the recent wave-vector resolved radio frequency spectroscopy data. Our results indicate that a
finite temperature structure of the Fermi gas around unitarity is more complicated and involves the
presence of the phase with preformed Cooper pairs, which however do not contribute to the long
range order.
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The unitary Fermi gas is a dilute but an exceptionally
strongly correlated ensemble of particles exhibiting uni-
versal properties and also a superfluid with a very large
critical temperature, making it relevant to a wide range of
systems including the quark-gluon plasma, neutron stars,
nuclei [1], and to a certain extent to high Tc superconduc-
tors. A number of fundamental properties of the Fermi
gas close to the unitary limit remain unknown and still
pose an unprecedented challenge for the theory [2]. Al-
though a convincing experimental proof of superfluidity
was provided 6 years ago [3], the measurements of the
pairing gap at finite temperatures are still in their infancy
and only recently the technique of photoemission spec-
troscopy allowed to probe the low-energy excitations of
the gas at finite temperatures [4]. The pairing gap mea-
surements are believed to answer one of the most intrigu-
ing questions related to the strongly interacting Fermi
gas: Does the simple picture of the phase transition from
superfluid to normal state still holds around the unitary
regime? Here we show, using an ab initio approach based
on Quantum Monte Carlo (QMC) technique, that the
pseudogap regime emerges in ultracold Fermi gases close
to the unitary point. In the pseudogap regime fermions
still have a strong tendency to be correlated with each
other and behave to some extent as a system of bosons.
Consequently above the critical temperature the system
exists in an exotic state which is neither entirely normal
nor superfluid and thus clearly eludes the understanding
within the framework of classical BCS theory of super-
conductivity. This situation can be better understood
from the viewpoint of the deep Bose-Einstein Condensa-
tion (BEC) limit, where the pairs of fermions form bound
bosonic dimers. This implies the existence of two distinct
temperature scales: the first one, Tc, related to the Bose-
Einstein condensation of bosonic molecules and the sec-
ond one, T ∗ > Tc, which is a temperature needed to break
up a dimer into fermions. Somewhere around the uni-
tary regime these two temperatures become practically

indistinguishable and eventually merge into the critical
temperature for superfluid to normal phase transition [5].
The region between Tc and T ∗ is usually referred to as
a pseudogap phase, where the system, although not be-
ing a superfluid, still exhibits the gap in the spectrum
of quasiparticle excitations. Actually the term “pseudo-
gap phase” may be somewhat misleading as, first, it is a
strong depletion of the density of states in the spectrum
and second, it is strictly speaking a particular regime, not
a phase, as there is no phase transition between pseudo-
gap regime and the normal Fermi gas.

The situation in the ultracold atomic gases at the uni-
tary regime is somewhat similar to that encountered in
high temperature superconductors (HTSC) [6], although
the pseudogap regime in the cuprates is not exclusively
related to Cooper-pair formation [7]. To appreciate these
similarities one has to consider the ratio between the crit-
ical temperature and the pairing gap at zero tempera-
ture. According to the celebrated BCS theory this ratio
is approximately equal to 1.76 (for the temperature ex-
pressed in energy units, kB = 1). Any deviation from
this value is an indication of the non-BCS superfluidity
in the system. The origin of the deviation is usually re-
lated to the interaction strength and manifests itself in a
rather large ratio of the pairing gap ∆ to Fermi energy
εF . It stands in contradiction to the implicit assumption
of the BCS theory that the interaction is weak which im-
ply ∆/εF ≪ 1. Clearly both ultracold gases and HTSC
violate this assumption, see Fig. 1. Morevover the cold
fermionic atoms constitute the system with the largest
ratio ∆/εF and known HTSC only approach this limit
[8].

Theoretically the single particle gap in the fermionic
spectrum can be determined from the spectral weight
function A(p, ω), which carry information about the sin-
gle particle excitation spectrum. In our approach we have
used the Path Integral Monte Carlo (PIMC) technique on
the lattice, which provides numerically essentially exact
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FIG. 1: (Color online) Ratio of the pairing gap and the critical
temperature for various superconductors (data extracted from
Ref. [10]). The clearly visible deviation from the typical ratio
predicted by the BCS theory is a hallmark of HTSC. The
same ratio for atomic Fermi gases close to the unitary limit
are denoted by blue circles (data from Ref. [11]).

results with quantifiable uncertainties. The details of the
approach have been described elsewhere [11–14]. Calcu-
lations presented here have been performed on a larger
lattice than reported in Ref. [13], namely 103, with par-
ticle number varying between 90 and 110. The number
of Monte Carlo samples was chosen in such a way to de-
crease the statistical errors below 1%. The systematic
errors, some due to finite lattice effects, others due to fi-
nite range effects, are estimated at no more than 10%, de-
pending on physical quantity. In order to determine the
size of the gap, we have used the one-particle temperature
Green’s (Matsubara) function which can be easily calcu-
lated within the PIMC formalism and which is related
to the spectral weight function [15]. The PIMC method
provides us with a discrete set of values of the Green’s
function. In the present calculations we have determined
the Green’s function at 51 imaginary time points, equally
spaced within the interval [0, β = 1/T ]. We have found
that due to the smooth behavior of the Green’s function
the accuracy is not affected when increasing the num-
ber of points. We have used two methods to extract the
spectral weight function from the Matsubara function:
the maximum entropy method (MEM) and the Singular
Value Decomposition method (SVD) [13, 16].

As an example in the Fig. 2 the spectral weight func-
tion is shown on the BEC side of the unitary regime
for (kF a)−1 = 0.2. The three temperature values cor-
respond to three regimes realized in this system. At
T ≈ 0.13εF < Tc = 0.19(1)εF the system is superfluid
[11], at T ≈ 0.19εF the long range order is lost, but
the gap in the single particle spectrum is still present.
Finally, the lower panel shows the spectral weight func-
tion just above the crossover to the normal Fermi liq-
uid. The negative energy branch is nonzero essentially
up to p ≈ pF . For the momenta above the Fermi sur-
face the negative energy branch has a tail which in the

FIG. 2: (Color online) Spectral weight function A(p, ω) at
1/kF a = 0.2 for three temperatures: T = 0.13εF < Tc (mid-
dle panel), T = 0.19εF ≈ Tc (upper panel) and T = 0.26εF >
T ∗ (lower panel). White circles denote the position of the
maxima of two branches of spectral weight function and the
white line represents the quasiparticle energy E(p) fit to the
maxima of the spectral weight function. In the insets we show
the section of the spectral weight function at the Fermi level.

case of the unitary Fermi gas is related to the behav-
ior of the occupation probability n(p) at large p which
decay as 1/p4 [17]. The positive energy branch starts
essentially around p ≈ pF and the presence of the gap
can be easily detected. The upper panel of Fig. 2 de-
scribes the superfluid system with no states at the Fermi
surface (see inset). In the middle panel (T ≈ Tc) the
density of states at the Fermi level is significantly low-
ered. At large temperatures the two branches merge into
a single branch extending from negative to positive val-
ues of ω − µ, characteristic for a normal state. Simi-
larly like in [13, 18] we have fitted the formula for the

quasiparticle energy E(p) =

√

(p2/2m∗ + U − µ)
2

+ ∆2

to the maxima of the spectral weight function. The ex-
tracted values of gap ∆, self-energy U and effective mass
m∗ have been presented in the table I. One may notice



3

T/εF ∆/εF U/εF m∗/m

(kF a)
−1 = −0.2 0.122 0.21 -0.28 0.95

T ∗/εF = 0.14(2) 0.146 0.06 -0.44 1.06

Tc/εF = 0.125(10) 0.17 0.0 -0.44 1.01

(kF a)
−1 = −0.1 0.12 0.42 -0.38 1.06

T ∗/εF = 0.14(1) 0.144 0.02 -0.31 0.95

Tc/εF = 0.135(10) 0.17 0.0 -0.30 1.01

(kF a)
−1 = −0.05 0.144 0.25 -0.45 1.04

0.18 0.04 -0.45 1.04

(kF a)
−1 = 0.0 0.12 0.47 -0.39 1.0

T ∗/εF = 0.19(2) 0.15 0.42 -0.38 1.0

Tc/εF = 0.15(1) 0.165 0.19 -0.48 1.06

0.184 0.05 -0.47 1.03

0.21 0.05 -0.49 1.04

(kF a)
−1 = 0.1 0.14 0.57 -0.37 0.97

T ∗/εF = 0.24(2) 0.17 0.31 -0.47 1.05

Tc/εF = 0.17(1) 0.22 0.15 -0.48 1.05

0.24 0.0 -0.49 1.04

0.28 0.0 -0.51 1.04

(kFa)
−1 = 0.15 0.18 0.46 -0.48 1.03

0.21 0.22 -0.53 1.08

(kF a)
−1 = 0.2 0.13 0.66 -0.43 1.0

T ∗/εF = 0.26(2) 0.17 0.62 -0.44 1.01

Tc/εF = 0.19(1) 0.19 0.58 -0.43 1.0

0.22 0.46 -0.45 1.02

0.26 0.03 -0.53 1.05

0.30 0.0 -0.56 1.05

TABLE I: Pairing gaps ∆, self-energy U and effective masses
m∗ extracted from the spectral weight function for various
temperatures T and scattering lengths (see left column). In
the left column the extracted values of crossover temperature
T ∗ have been shown together with the values of the critical
temperatures (upper estimates) taken from Ref. [11]. All
the results except of those for (kF a)

−1 = −0.2 have been
obtained for the lattice 103. The results on the BCS side
at (kF a)

−1 = −0.2 have been obtained for the lattice 83 as
described in [13]. The values of ∆/εF < 0.1 should be treated
as lying within the interval [0, 0.1] due the finite resolution,
see Ref. [16].

that the effective mass is practically constant and does
not deviate from the bare mass by more than 10%. The
self-energy U decreases with (kF a)−1. When compared
to the experimentally extracted value at unitarity (see
Ref. [19]) it agrees within a 10% accuracy. The values
of Tc around unitarity have been determined elsewhere
[11, 20]. The value of the gap at Tc is usually called
the pseudogap, i.e. measure of the strength of the short
range correlations at the critical temperature. These re-
sults can be subsequently used to estimate the value of
T ∗, where the gap tends to zero and also the value of

FIG. 3: (Color online) The gap ∆/εF extracted from the
spectral weight function as a function of temperature and
scattering length. The dashed lines denote two temperatures:
critical temperature Tc and the crossover temperature T ∗.
Uncertainties (both systematic and statistic errors, estimated
to be no more than 10%) of these temperatures, are denoted
by shaded area.
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FIG. 4: (Color online) Experimental (dots) and theoreti-
cal (lines) energy distribution curves (EDC) for the trapped
atomic gas in the unitary regime at the critical temperature
(defined in the center of the trap) for various momenta p.

the gap at the critical temperature Tc for the superfluid
to normal phase transition. We show the size of the gap
∆/εF plotted as a function both temperature and scat-
tering length in Fig. 3. The two temperatures T ∗ and Tc

become indistinguishable, due to uncertainties generated
by Monte Carlo approach, between −0.1 < (kF a)−1 < 0.
Hence already at the unitary limit the system exhibits
the pseudogap phase, albeit in a relatively small temper-
ature interval. The temperature interval within which
the pseudogap phase exists increases as one moves to the
BEC side.

The present work is the first attempt to determine
the evolution of the pseudogap as a function of temper-
ature and interaction strength from fully ab initio cal-
culations. Previous results obtained using this ab initio



4

method were used as a benchmark by other theoretical
approaches and were as well validated by subsequent ex-
perimental results [21, 22]. On one hand, the most recent
calculations of Ref. [23], based on the pairing-fluctuation
theory, indicated the presence of the pseudogap without
however specifying its size and evolution as a function of
the scattering length. On the other hand the recent mea-
surements of the magnetic susceptibility of the trapped
atomic gases were explained within the Fermi liquid the-
ory without invoking the pseudogap model [22, 24], a
description challenged in Ref. [23]. The Fermi liquid pa-
rameters in Ref. [24] were extracted in a QMC calcula-
tion at zero temperature, in which the formation of pairs
was artificially suppressed, and the spectral functions
were approximated with δ-functions. Here we present
the comparison of the experimental results based on the
wave-vector resolved spectroscopy [23, 25]. Since the ex-
perimental data are for a trap which is inhomogeneous
and likely composed of spatially separated and coexisting
phases it is difficult to relate the particular behavior of
the extracted energy distribution curves to the appear-
ance of the pseudogap phase. However the agreement of
the experimental and theoretical results supporting the
existence of the pseudogap provides an implicit confirma-
tion of the quality of the theoretical calculations. We use
the Local Density Approximation [26] to relate the PIMC
input to trap data, see Fig. 4 (without using any fitting
parameters, see [16] for details). Over the years there
was a significant body of work addressing the physics
of preformed pairs, pseudogap and dissociation tempera-
ture T ∗, see Refs. [5, 27–30] and earlier references, based
on a variety of theoretical models and approximations.
The theoretical predictions for some or all of these en-
tities either varied widely or were at most of qualitative
nature and the values obtained in these references for the
pseudogap and T ∗ are significantly different from ours.
The lack of quantifiable error bars makes essentially im-
possible to re-conciliate these earlier predictions and to
judge their accuracy.

In summary we have determined in ab initio calcula-
tions the spectral weight function for various tempera-
tures around the unitary regime. We have confirmed the
existence of the pseudogap phase (we have reported the
evidence of this phase at unitarity in Ref. [13]) and lo-
cated the onset of this phase at a value of the interaction
strength corresponding to (kF a)−1

≈ −0.05. To date the
present results are the first ab initio calculations which
were able to determine the size of the pseudogap and its
behavior as a function of interaction strength and tem-
perature. Our results indicate that a finite temperature
structure of the Fermi gas around unitarity is more com-
plicated and involves the presence of the phase with pre-
formed Cooper pairs, which however do not contribute
to the long range order.
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