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We theoretically study the relaxation of high energy single particle excitations into molecules in a sys-
tem of attractive fermions in an optical lattice, both in the superfluid and the normal phase. In a system
characterized by an interaction scale U and a tunneling rate t, we show that the relaxation rate scales as
∼ Ct exp[−αU2/t2 ln(U/t)] in the large U/t limit. We obtain explicit expressions for the temperature and
density dependent exponent α, both in the low temperature superfluid phase and the high temperature phase
with pairing but no coherence between the molecules. We find that the relaxation rate decreases both with tem-
perature and deviation of the fermion density from half-filling. We show that quasiparticle and phase degrees
of freedom are effectively decoupled within experimental timescales allowing for observation of ordered states
even at high total energy of the system.

PACS numbers:

Ultracold atoms on optical lattices [1] can be used for sim-
ulating strongly interacting quantum many body systems [2–
4] with tunable Hamiltonian parameters. Although the main
focus of cold atom experiments has been to obtain the equilib-
rium phase diagram of various models, ultracold atomic sys-
tems also provide an unique platform to study the intrinsic
non-equilibrium dynamics of strongly interacting many body
systems. Their low energy-scales and decoupling from exter-
nal environment lead to long non-equilibrium time-scales over
which the system can be followed without ultra-fast probes.

The issues of non-equilibrium relaxation dynamics are be-
coming an important consideration for the state of the art cold
atom experiments [5–11] as well as recent pump-probe exper-
iments with electron systems [12]. The tunability of Hamilto-
nian parameters to access strongly interacting regimes is one
of the central attractive features of cold atoms. However, an
implied assumption in connecting the results obtained on op-
tical lattices to the physics of condensed matter systems is that
the atoms on the optical lattice have achieved thermal equilib-
rium at low temperatures after tuning the parameters. Hence,
it is important to understand the relaxation dynamics and as-
sociated equilibration timescales [13–20] of these systems.

The attractive Hubbard model on optical lattices is a lattice
implementation [21] of BCS-BEC crossover [1, 22], which
is a paradigm for understanding strongly interacting super-
fluids. The strong coupling physics is governed by forma-
tion of tightly bound molecules which undergo Bose-Einstein
condensation at low temperatures. In this Letter, we study
the relaxation dynamics of the attractive Hubbard model in
the strong coupling limit, where most fermions are paired to
form molecules. We focus on the decay of excess unpaired
fermions present in the system (either due to an external drive
like lattice modulation or due to sweeping of the Hamilto-
nian parameters) to form molecules. For these high energy
excitations, energy conservation requirements lead to a very
slow decay rate that scales super-exponentially with the ra-
tio of the interaction strength to the bandwidth of the system.

Thus, at strong coupling, the fermionic quasiparticles and the
motion of the bosonic molecules effectively decouple in the
non-equilibrium dynamics of the system. This leads to the
possibility of observing ordered states in these systems even
at a high total energy of the system. Using a particle-hole
transform to map this problem to that of spin mediated decay
of double occupancies in the repulsive Hubbard model, we
compute the decay rate both in the low temperature superfluid
phase and in the high temperature paired phase for arbitrary
filling fractions in the lattice. We find that the decay rate de-
creases both with temperature and with the deviation of the
fermion density from half filling on either side. We discuss
the implications of these results for maintaining adiabaticity
during a sweep of Hamiltonian parameters.

We consider the one band attractive Hubbard model for
fermions on a 3D cubic optical lattice

H = −t
∑
〈ij〉

c†iσcjσ − U
∑
i

, ni↑ni↓ (1)

where t is the tunneling matrix and U is the local attraction
between the fermions. For large U/t, the fermions are paired
to form molecules with a large binding energy ∼ U , which
undergo Bose condensation at a temperature ∼ J = 4t2/U ,
controlled by the kinetic energy scale of the molecules. We
consider two temperature regimes: (a) the low temperature
(T � J) superfluid phase, where the molecules are Bose
condensed and (b) the high temperature (T ∼ t � J) phase
where the molecules do not have phase coherence, and calcu-
late the decay rate of unpaired fermions in both phases.

The formation of a molecule from two unpaired Fermions
is forbidden unless the binding energy of the molecule (∼ U )
is carried off by other excitations in the system. There are two
different modes of excitations where this excess energy can be
dumped: (a) kinetic energy of other unpaired fermions, (with
scale ∼ t), and (b) kinetic energy of the molecules (with scale
∼ J). In this paper, we assume (b) is dominant, which limits
the density of unpaired fermions ρex < J/t ∼ t/U . To absorb
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TABLE I: Equivalence of different quantities under the mapping be-
tween the attractive and the repulsive Hubbard model

Attractive Model Repulsive Model

Unpaired Fermions Doublon hole pairs
Binding Energy Mott gap

Deviation from half-filling Magnetization
Superfluid order Canted antiferromagnetic order

K. E. of Molecules Superexchange energy

the binding energy n ∼ U/J ∼ U2/t2 molecular excitations
have to be created. The corresponding matrix element is

M ∼ t t
J

t

2J
. . .

t

nJ
=

t

n!

[
t

J

]n
∼ t exp

[
−αU

2

t2
ln
U

t

]
,

where, to leading order, we have used n! ∼ nn for large n
and nJ = U to write the final form. Here α is a temperature
and density dependent constant which depends on the details
of the process. Within Fermi’s golden rule, the decay rate
Γ ∼M2 and thus decreases super-exponentially with U/t.

To obtain a physical picture of the decay process, it is
instructive to use a particle-hole transformation [23] which
maps the attractive (negative U ) Hubbard model to a repul-
sive (positive U ) Hubbard model. The attractive model with
zero magnetization at any density is equivalent to the repul-
sive model at half-filling (one particle per site) with a finite
magnetization proportional to the deviation of the fermion
density in the attractive model from half-filling, i.e. m =
(1/2)(1 − ρ), where ρ is the fermion density in the attractive
Hubbard model. Under this transformation, molecule forma-
tion is mapped to the formation of a Mott insulator, and the
unpaired fermions are equivalent to the high energy double
occupancy (doublon) hole excitation, with the binding energy
of the molecules playing the role of the Mott gap. At half-
filling, the low energy physics of the repulsive Hubbard model
reduces to an antiferromagnetic Heisenberg model which ex-
hibits a canted antiferromagnetic (CAF) order in its ground
state in the presence of finite magnetization. This spin or-
dering is equivalent to the emergence of superfluidity in the
attractive model with the kinetic energy of the molecules play-
ing the role of spin wave fluctuations. The equivalence of the
relevant quantities under the mapping is shown in Table. I.
Here, we will use the language of the spin model to look at
quantitative estimates of the decay timescales.

Decay in the superfluid phase: The superfluid phase of the
attractive fermions is represented by the CAF phase for the
spins in the repulsive model. As a hole (doublon) hops in the
background of a Mott insulator with CAF ordering (shown in
Fig. 1(a)) from a site i to a site j, it disrupts the spin tex-
ture and creates purely ferromagnetic bonds between nearest
neighbors, each of which gains an energy of (Jx/2), where
x = 1− 4m2 is proportional to the antiferromagnetic compo-
nent of the spin order. Hopping of the hole along a path cre-

(a) 

(b) (c) 

FIG. 1: Hopping of a hole in a canted antiferromagnetic back-
ground.(a) A single hop moves back one spin, creating broken bonds
shown by dashed lines. (b) and (c) Configurations before and after
multiple hops of a hole. The solid line denotes the trajectory of the
hole, while the dashed lines in (c) shows the broken bonds (Color
online).

ates ferromagnetic bonds in the directions transverse to this
path, thus creating a domain wall in the system, as shown in
Fig. 1(b) and (c). In a cubic lattice each hop creates z− 2 = 4
broken bonds. In order to absorb the energy U , the hole needs
to traverse a path of length n = 2U/[(z − 2)Jx]. Within
Fermi’s golden rule, the decay rate is

Γ = 2πρexν(n)|Mfi(n)|2 (2)

where ρex is the density of holes (or equivalently of unpaired
fermion excitations), and Mfi(n) is the matrix element con-
necting the initial state with a doublon and a hole to the final
state with a domain wall of length n

Mfi(n) =
t

n!

[
2t

(z − 2)Jx

]n
∼ t(t/U)n. (3)

Here, ν(n) is proportional to the number of self-avoiding
paths of length n connecting the doublon and the hole

ν(n) =

∫
d3r

2n

(z − 2)Jx
S(n, r)G(r), (4)

where S(n, r) is the number of self-avoiding paths of length n
connecting two points at a distance r and G(r) is the dimen-
sionless doublon-hole-pair correlation function. We assume
that the doublons and holes are uncorrelated, i.e. G(r) = 1.
This assumption is valid in the limit of low density of dou-
blons, precisely the limit we are interested in. Then, ν(n) =

2n
(z−2)JxS(n), where S(n), the total number of self-avoiding
paths of size n. S(n) ∼ gnnk for large n, and the constants
g = 4.68 [24] and k = 1/6 [25] for a cubic lattice have previ-
ously been computed in the context of polymer physics. Using
these, we obtain the relaxation rate of doublons in the repul-
sive Hubbard model or equivalently the relaxation rate of the



3

4 5 6 7 8 9 10
U/t

10
-14

10
-11

10
-8

10
-5

0.01
Γ/

 (
ρ ex

t)

4 5 6 7 8 9 10
U/t

10
-33

10
-27

10
-21

10
-15

10
-9

0.001

Γ/
 (

ρ ex
t)

FIG. 2: (Color online): The decay rate of unpaired fermions (a) in
the superfluid phase and (b) in the high temperature normal state as a
function of U/t for different fermion densities: (i) half-filling (solid
black line) (ii) ρf = 0.7 (red dashed line) and (iii) ρf = 0.5 (blue
dotted line).

unpaired fermions in the attractive Hubbard model,

Γ ∼ tρex√
g

( g
8x

)2+k
exp

[
−
(
U2

4xt2
− 3− 2k

)
ln

(
U
√
gt

)]
.

Note that, for the attractive case, x = 2ρ − ρ2 is a measure
of the filling factor which vanishes both at ρ = 0 (empty
band) and ρ = 2 (completely filled band) and attains its maxi-
mum value at half-filling (ρ = 1). The low temperature decay
rate, plotted for different densities in Fig. 2 (a), show the ex-
pected super-exponential scaling with U/t. As we move away
from half-filling, the energy lost in a single hop decreases, and
longer domain walls are required to absorb the excess energy,
leading to a slower decay rate.

Decay in the High Temperature Normal State: We now con-
sider the decay of the single particle excitations in the high
temperature phase (T ∼ t � J), where the fermions are still
paired into molecules but there is no superfluidity. In terms
of the spin model, this regime corresponds to a completely
spin disordered phase with no spatial or dynamic correlations.
The single site Hilbert space can be occupied by an ↑ spin
with probability 1/2 + m or by a down spin with probability
1/2−m (we are working at fixed magnetization).

As in the low temperature phase, the motion of holes (dou-
blons) pushes the spins along the trajectory by one site. How-
ever, the energy lost in a given hop now depends on the con-
figuration of the neighboring spins along the path. Since there
is no spatial correlation between the spins, the energy lost
in each hop can be treated as an independent random vari-
able which takes the values Jr/2 (r = −4,−3, ...4), with
the probability P (r) = (a/b)r/2

∑4−r
i=0 4Ci 4Ci+r a

ib4−i,
where nCk are the binomial co-efficients, a = (1/2 − m)2

and b = (1/2 + m)2. The mean energy lost in each hop is 0,
while the variance of the distribution is given by J2x/2. By
central limit theorem, the total energy lost in l steps is a Gaus-
sian random variable with zero mean and a variance lJ2x/2.

P (E, l) =
1√
πxlJ

exp[−E2/(J2lx)]. (5)

Since the doublon needs to lose an energy U to decay, one
must now average over decay processes from paths of length
l ≥ n with the probability distribution P (U, l). The square
of the matrix element for a process involving l hops is given
by M2 ∼ t2(t2/ε21)(t2/ε22)...(t2/ε2l ) ∼ t2(2t2/lJ2x)l, where
εi is the energy lost after i steps and, to leading order, we
have replaced ε2i by its average value iJ2x/2. To see the scal-
ing in t/U , we note that the Gaussian probability distribution
P (U, l) has a width l ∼ 2U2/(xJ2), and hence the square of
the matrix element scales as t2(t/U)2l. Then, summing over
all paths with l > n

Γ ∼ 2πt2ρex

∫ ∞
n

dlgllkP (U, l)

(
t

U

)2l

. (6)

The high temperature decay rate, plotted as a function of U/t
in Fig. 2(b), is orders of magnitude smaller than the low tem-
perature decay rate. To understand this, note that the motion
of the high energy pair can both excite and de-excite low en-
ergy modes in the background system. At zero temperature,
these low energy modes are unoccupied and the motion of the
high energy pair then leads to excitation of these modes. As
temperature increases, the occupation probability of the low
energy modes increases and the motion of the high energy pair
randomly leads to excitation and de-excitation of these modes.
Thus the high energy pair loses its energy more efficiently at
lower temperatures and decays faster.

Adiabaticity and sweep rates: In cold atom experiments the
strongly interacting regime of model systems is accessed by
tuning the Hamiltonian parameters at a finite rate, which is
limited by the lifetime of the atoms in the trap. The tuning pro-
cess should be adiabatic to remain in the interesting low tem-
perature regime for the system. Since the microscopic relax-
ation processes determine the timescale for equilibration, the
relaxation timescales, along with experimental sweep rates,
would determine the limits of adiabaticity in these experi-
ments. We now make these ideas more precise by looking
at the constraints due to the slow decay of unpaired fermions.

In the large U/t limit of the attractive Hubbard model, the
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unpaired fermion density in equilibrium, ρex ∼ exp(−U/T ),
where T is the temperature of the system. We assume an adi-
abatic sweep of U/t at a constant rate γ = ˙(U/t) and try
to assess the limits where adiabaticity fails. At low temper-
atures, the entropy mainly comes from the kinetic motion of
the molecules; so for a constant entropy process, T/J = λ/4
or U/T = U2/(λt2) along the sweep , where λ is a constant.
Now, adiabaticity will be maintained in the regime where

˙ρex = − ˙(U/T )ρex = − 2

λ

U

t
γρex ≤ −Γ(U/t)ρex. (7)

As the microscopic rate Γ goes down super-exponentially with
U/t, this criterion would set an upper limit of (U/t)max(γ),
which is the maximum U/t upto which the system remains
adiabatic with a sweep-rate γ. Our analysis shows that it is
extremely difficult to keep the system fully adiabatic in the
strong coupling limit when either the tunneling or the interac-
tion are being changed, as the relaxation timescale of unpaired
atoms (or doublons for the repulsive case) can be anomalously
long. Experimentally this long timescale should manifest it-
self as a saturation in the molecular fraction with the satura-
tion occurring at smaller values of U/t for faster sweep rates.

At the same time, if relaxation of unpaired fermions is
very slow (longer then the timescale of experimental measure-
ments), then they can be considered as infinitely long lived
and completely decoupled from other degrees of freedom in
the system like the phase fluctuations of the superfluid order
parameter. Similarly, in the repulsive Hubbard model, if the
goal is to observe antiferromagnetism, one may worry that
a small number of doublons can release enough energy to de-
stroy magnetic order. If the doublons are very long lived, there
will be a long timescale over which one can neglect relaxation
of doublons and analyze the quasi-equilibrium with “unbreak-
able” doublons. Thus, within experimental timescales, there
is an effective spin-charge decoupling which makes it easier
to observe spin ordering even in the presence of high energy
charge excitations. The idea of realizing metastable states
with long lived doublons has also been discussed in the con-
text of the η-paired state in the repulsive Hubbard model [26].

We have studied the decay of unpaired fermions in an at-
tractive Hubbard model. We have shown that the decay rate
scales as∼ Ct exp[−αU2/t2 ln(U/t)] for largeU/t and com-
puted the exponent α both at low temperatures (superfluid
phase) and high temperatures (normal state of molecules). We
find the decay rate decreases with increase in both tempera-
ture and the deviation of the fermion density from half-filling.
We also discussed implications of our analysis for realizing
many-body states in optical lattices. The downside of the long
relaxation times is that it is difficult to change parameters of
the system fully adiabatically. The upside of slow relaxation is
that there is effective decoupling of different degrees of free-
dom. So for example, one may be able to achieve equilibration
of phase (magnetic) degrees of freedom, even when there is a
finite density of unrelaxed single fermions (doublons).
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