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It is demonstrated that the performance of the self-modulated proton driver plasma wakefield
accelerator (SM-PDPWA) is strongly affected by the reduced phase velocity of the plasma wave.
Using analytical theory and particle-in-cell simulations, we show that the reduction is largest during
the linear stage of self-modulation. As the instability nonlinearly saturates, the phase velocity
approaches that of the driver. The deleterious effects of the wake’s dynamics on the maximum energy
gain of accelerated electrons can be avoided using side-injections of electrons, or by controlling the
wake’s phase velocity by smooth plasma density gradients.

PACS numbers: 52.40.Mj, 52.65.-y, 52.59.-f

A plasma is a promising medium for high gradient ac-
celeration of charged particles. It can sustain fields orders
of magnitude higher than the breakdown fields of con-
ventional accelerators [1]. One can excite strong plasma
waves either with lasers or with charged particle beams
[2, 3]. One of the very attractive approaches is to use
already existing TeV proton beams as a driver to gener-
ate plasma wake fields. Due to the limitation set by the
transformer ratio, the energy gain of the witness beam
cannot be much larger than the driver energy [4]. Em-
ploying a TeV proton driver allows in principle to acceler-
ate an electron bunch to TeV energies in one single stage
thus alleviating the technical burden of multistaging.

It has recently been shown using detailed simulations
[5, 6] that a high gradient plasma wake fields can be
generated with an ultra-short bunch of protons. In
that scenario, the proton bunch was shorter than the
plasma wavelength. Unfortunately, such ultra-short pro-
ton bunches are not presently available. The length of ex-
isting TeV-class proton bunches is of order Lσz ∼ 10cm.
The characteristic plasma field, the so called wave break-
ing field is EWB = mcωp/e ≈ 96

√

ne(cm−3)V/m, where

ωp =
√

4πnee2/m is the plasma frequency defined by the
electron density ne. Accelerating gradients of a GV/m-
scale require a plasma density of at least ne = 1014cm−3

corresponding to the plasma wavelength λp ≡ 2π/kp ≡
2πc/ωp ∼ 3mm. Thus, the existing proton bunches cor-
respond to σz = (10− 100)λp and cannot efficiently gen-
erate wake fields in such plasma. The situation with
the proton bunches is very much the same as it was
with laser pulses in the 1980’s. The availability of long
laser pulses necessitated the invention of a self-modulated
laser wakefield accelerator (SM-LWFA)[7]. Subsequent
progress in ultra-short pulse laser technology removed
the need for self-modulation and led to successful mono-
energetic electron acceleration in the bubble regime [8]
that reached GeV energies.

A long proton bunch propagating in an overdense
plasma is also subject to self-modulation at the back-
ground plasma wavelength [9]. The effect of self-
modulation opens a possibility to use existing proton
bunches for large amplitude wake field excitation. An
experimental program is currently under consideration
at CERN. The Super Proton Synchrotron (SPS) bunch
with 450 GeV protons is proposed as the driver for the ini-
tial stage of the experimental campaign. The wake field
will be used for accelerating externally injected electrons.
The injected particles must be trapped in the wake field.
The trapping condition depends on the wake field ampli-
tude and phase velocity [10]. Because it is expected that
the SPS bunch will generate a weakly-nonlinear plasma
wave with the same phase velocity υph as the speed of the
driver, it is natural to assume that the gamma-factor of
the injected electrons γel must be comparable to that
of the proton driver γp for them to be trapped. As
demonstrated below, that is not the case because the
spatio-temporal nature of the self-focusing instability of
the proton bunch considerably reduces υph.

Although it has been realized for some time [11] that
the phase velocity of the plasma wake produced by the
self-modulation instability of a laser pulse is slower than
the pulse’s group velocity, this was not an important is-
sue because the laser group velocity was usually modest.
For the self-modulated proton-driven plasma wakefield
accelerator (SM-PDPWA), the wake slowdown is of crit-
ical importance. Here we show that the phase velocity of
the unstable wave is defined not so much by the driver
velocity, but mainly by the instability growth rate. The
wake field is greatly slowed down at the linear instability
stage when the growth rate is at its maximum. At the
nonlinear saturation stage, the wake reaches the driver
phase velocity. We also propose a method to manipulate
the wake phase velocity by smooth longitudinal density
gradients.
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To describe the wake slowdown analytically, we adopt
the formalism developed within the framework of the
envelope description of the driver [9]. We assume an ax-
isymmetric bunch driver and utilize the co-moving and
propagation distance variables ξ = β0ct− z and τ = z/c,
respectively, where β0 = υz/c (υz is the velocity of the
bunch) and z is the bunch propagation direction is z.
Further, the driver bunch is assumed stiff enough so that
its evolution time is slow ∂τ ≪ c∂ξ. The bunch is as-
sumed to be long: ωpσz/c ≫ 1. The assumed bunch
density profile is ρ(r, ξ) = ρ0 ψ(r)f(ξ), where ρ0 = nbe is
the charge density of the proton bunch. For simplicity,
the step-like radial profile ψ(r) = Θ(rb − r) is assumed,
where rb(ξ, τ) is the evolving radius of the bunch’s enve-
lope, and Θ(rb − r) is the Heaviside step-function. The
betatron frequency and wavenumber of the self-focused
bunch are defined as ωβ0 ≡ ckβ0 =

√

4πnbe2/2γbmp,
where mp is the proton mass. In the limit of a thin bunch
(kprb ≪ 1) and linear plasma response, the equation of
motion for the bunch’s radius (in normalized coordinates
r̃b = rb/rb0, τ̃ = ωβ0τ, ξ̃ = kpξ) is given by [9]

∂2r̃b(ξ̃)

∂τ̃2
− ǫ̃2n

r̃3b (ξ̃)
= −

ˆ ξ̃

0

I(ξ̃′)

r̃b(ξ̃′)
sin(ξ̃ − ξ̃′)dξ̃′, (1)

where ǫ̃n = σθ/(kβ0rb0) with σθ, rb0 being the bunch an-
gular divergence, initial radius, and longitudinal current
profile, respectively, and I(ξ) = f(ξ)r̃2b (ξ̃, τ̃ ). Perturbing
Eq.(1) about the initial radius r̃b = 1 + δrb, yields the
linearized equation [9]:

(

∂2

∂ξ̃2
+ 1

)(

∂2δrb
∂τ̃2

+ 3ǫ̃2nδrb

)

= δrb. (2)

Following the approach of Bers [12], we find an asymp-
totic solution of this equation for sufficiently late times,
τ̃ > Le, where Le ∼ 1/Γ is the e-folding length, and
Γ is the growth rate of the instability. Substituting of
δrb = δr̂b exp(−iδωτ̃ + ikξ̃) into Eq. (2) yields the dis-
persion equation δω(k). The peak growth rate is calcu-
lated [12] by introducing δω

′

= δω − υk, where υ = ξ̃/τ̃ ,
and requiring that D(δω

′

, k) = 0 and ∂D(δω
′

, k)/∂k = 0:

(1 − k2)(−δω2 + 3ǫ̃2n) = 1, (3)

−k(−δω2 + 3ǫ̃2n)− δωυ(1− k2) = 0. (4)

Equations (3) and (4) lead to the standard dispersion
relation typical of the beam-breakup instability which
is known [18] to always possess a growing mode with
ℑ(δω) > 0. To simplify the algebra, we assume that 3ǫ̃2n
is small and consider the initial stage of the instability
corresponding to k = 1 + δk, where δk ≪ 1. In this
limit δω ≫ ǫ̃n, and Eqs. (3),(4) reduce to the dispersion
relations δω3 = −υ, and δω = −2vδk. The complex roots
are given by

δω± =
1± i

√
3

2

(

ξ̃

τ̃

)1/3

, δk = −1 + i
√
3

4

(

τ̃2

ξ̃2

)1/3

. (5)

In physical units, the condition for δω ≫ ǫ̃n can be ex-
pressed as

t≪ tshort ≡ γ2b
ξ

c

nbm

nemp

(

kpr
2
b0

εn

)3

, (6)

where εn = γbσθrb is the normalized beam emittance.
The number of e-foldings is given by Ne = ℑ(δω)τ̃ −
ℑ(δk)ξ̃ = 3ℑ(δω)τ̃ /2, and therefore the growth rate

Γ = 3ℑ(δω)/2 = 3
√
3
(

ξ̃I(ξ̃)/τ̃
)1/3

/4. In dimensional

variables, the instability growth rate is expressed as

Γ =
3
√
3

4
ωp

(

nbm

2nempγb

ξ

ct

)1/3

, (7)

and the maximum number of e-foldings achieved at t =

tshort is Ne ≈ (3
√
3/4)ξ̃1/3τ̃2/3 = (3

√
3/4)kpσz ǫ̃

−2/3
n .

Note that for the typical parameters of the SPS bunch
and plasma density ne = 1014 . . . 1015cm−3, Ne ≈ 100.
Therefore, it is most likely that the self-modulation in-
stability will enter the nonlinear regime prior to t = tshort,
and the above assumptions will remain valid throughout
the linear stage of the instability.

The crucial observation is that δω and δk have not
only imaginary parts responsible for instability growth,
but also real parts. It is these real parts that change
the wake phase velocity. The wake phase is ψe = (1 +
ℜ(δk))ξ̃ − ℜ(δω)τ̃ , and the phase velocity υph = υb +

(∂ψ/∂τ̃)/(∂ψ/∂ξ̃)ωβ0/ωp. Substituting (5) for δω and
δk and neglecting small terms on the order of υ−2/3, we
obtain the phase velocity of the growing mode

υph = υb

[

1− 1

2

(

ξ

ct

)1/3(
nbm

2nempγb

)1/3
]

. (8)

The wake phase velocity (8) can be significantly lower
than the speed of the bunch due to the instability dis-
persion. The relativistic γ−factor of the wake phase ve-

locity γph =
(

1− υ2ph/c
2
)−1/2

can be an order of mag-

nitude lower than that of the driving bunch. This effect
will prohibit electron acceleration to high energies at the
growing instability stage. Yet, one can easily see from
the formulas that the phase velocity decrease is closely
connected to the instability growth rate. Thus, one may
expect that when the instability saturates, the phase ve-
locity of the wake becomes close to that of the bunch.
This effect might help to inject low energy electrons into
the wake of a highly relativistic proton bunch at a later
stage of the instability, just before the nonlinear satura-
tion of the instability.

We should mention here that the dispersion relation
allows also for a purely oscillating mode with δω0 =

−
(

ξ̃/τ̃
)1/3

, δk = 1
2

(

τ̃/ξ̃
)2/3

. This mode has the su-
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Figure 1: (color online) A 3D hybrid PIC simulation of
SPS bunch self-modulation in plasma with constant density
ne = 7.76 · 10

14 cm−3. Frame (a) shows the evolution of the
maximum accelerating field. The linear instability persists
for some 5 meters before the nonlinear saturation at some 0.4
GV/m. Frame (b) shows the phase velocity of the wake as
a surface dependent on the propagation distance z and the
bunch coordinate ξ. The phase velocity experiences a deep
drop towards the tail of the bunch at the linear stage of the
instability. When the bunch is completely modulated and the
instability saturates at z > 5m, the wake phase velocity surges
up to that of the driving bunch. Frame (c) gives a snapshot
of the wake phase velocity after 2.5 meters of propagation dis-
tance (the solid red line). The broken line gives the analytical
expression (8).

perluminous phase velocity

υ0ph = υb

[

1 +

(

ξ

ct

)1/3(
nbm

2nempγb

)1/3
]

. (9)

Stable propagation of a modulated beam has been ob-
served recently in simulations [13]. Also large elec-
tric fields were achieved, reaching 1 GV/m when LHC
bunches were used to drive the wakefield resulting in en-
ergy gains for test electrons beyond 6 TeV [14].

The envisioned experimental program at CERN will
use the SPS bunch. It normally delivers 1.15·1011 protons
at 450 GeV/c with the normalized emittance ǫn = 3.5µm
and the length σz = 12cm. We use these bunch parame-
ters in our 3D PIC simulations with the newly developed
hybrid code H-VLPL3D [15]. This new code simulates
the background plasma hydrodynamically while high en-
ergy bunches are treated with a full kinetic algorithm.
The hydrodynamic part of the code introduces much less
numerical dispersion into the plasma waves than a PIC
code with the same resolution. The bunch focused to
σr = 0.19mm is sent through plasma with the free elec-
tron density ne = 7.76 ·1014 cm−3. The maximum bunch
density on axis is nb = 1.5 · 1012 cm−3. To avoid beam
hosing and to seed the self-modulation, we assumed the
bunch is hard-cut in the middle [9].

The simulation results are presented in Fig. 1. From
the frame (a) we see that the linear instability stage
lasts during the first 5 meters of propagation. Then, the
bunch is completely modulated and the nonlinear satu-
ration is reached. The wake phase velocity is shown in
the frame (b). A significant slowdown of the wake is ob-
served during the instability and along the bunch. The
lowest phase velocity is The lowest relative phase veloc-
ity is (υph − c)/c ≈ −3.5 · 10−4, corresponding to a wake
γph ≈ 38. This is an order of magnitude lower than the
γ−factor of the driving bunch. Frame (c) compares the
simulation result (the solid red curve) with the analytic
expression (8), in which we substituted the SPS bunch
parameters. This snapshot of the wake phase velocity
has been taken at z = 2.5m, in the middle of the linear
instability stage. A reasonable agreement between the
simulation and the analytical theory is observed.

The wake slowdown has a dramatic impact on the elec-
tron trapping and acceleration. First, it allows for trap-
ping of low energy electrons whose velocities are compa-
rable with the wake velocity. However, the energy gain in
the slow wake is very limited due to fast dephasing. The
energy gain is given by ∆W ≈ 4γ2phmc

2(Emax/EWB)
[10]. At the linear stage we have Emax ≪ EWB and
the energy gain is low for small γph. The dephasing,
however, has a much worse effect : if the electrons have
been injected into the early instability phase of the slow
wake, they can be lost when they overtake the wave and
enter its defocusing phase. The dephasing distance is
kpLd ≈ 2πγ2ph and for the slow wake field it can be shorter
than the distance needed for the instability to develop.
For this reason, the electrons must be injected late in the
development of the instability, when the phase velocity
begins to grow. In our simulation, the optimum point
for injection is located around z = 5m. The wake phase
velocity is still low here, but starts growing rapidly as the
bunch reaches complete modulation.

A possibility to inject electrons into the wake is side
injection [16]. In this case, a bunch of electrons is prop-
agating at a small angle with respect to the driver. The
advantage of side injection over on-axis injection is that
electrons are gradually “sucked-in” at the right phase by
the wake transverse field. This leads to high quality
quasi-monoenergetic acceleration of electrons.

In our simulation, we have injected two bunches of test
electrons. The first bunch of 20 MeV electrons was in-
jected on-axis at the plasma entrance. This electron en-
ergy roughly corresponded to the minimum wake phase
velocity at the tail of the driver. We found that dur-
ing the linearly growing instability stage, these electrons
underwent more than one oscillation in the ponderomo-
tive bucket. Finally, after 10 meters of propagation, the
maximum energy gain was about 200 MeV with a rather
broad energy spectrum as seen in Fig. 2.

The second electron beam with 10 MeV energy was
side-injected at an angle of 0.005 radian. The electron
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Figure 2: (color online) Electron energy spectra at z = 10m.
There were two groups of electrons. One was injected on-
axis at the plasma entrance; another was side-injected at the
angle of 0.005 radian. In the latter case, the electron bunch
trajectory should cross the driver axis at z = 6m, ξ = 20 cm
behind the bunch head. The on-axis injection lead to a broad
spectrum and low energy gain. The side injection resulted in
a quasi-monoenergetic beam at 1.2 GeV energy and about 1%
energy spread. Initial electron energy was 20 MeV for on-axis
injection and 10 MeV for side injection.

Figure 3: (color online) Test electron bunch (dark green discs)
and the accelerating field (the red-blue wave) at z = 5m. The
electrons are captured and split into micro bunches located
exactly in the accelerating and focusing phases of the wake.

bunch trajectory was designed to cross the driver axis at
z = 6m, ξ = 20 cm behind the bunch head. Due to the
small injection angle, however, the electrons were sucked
in into the wake much earlier, at the position z ≈ 5m.
The wake transverse fields have put most of the bunch
electrons into the focusing and accelerating phase. The
electron beam and field configuration just after the elec-
trons entered the wake is shown in Fig. 3. The electron
beam is split into micro-bunches located exactly in the
accelerating and focusing phases of the wake. Due to this
configuration, the side injected beam resulted in a maxi-
mum energy gain of 1.2 GeV and a rather narrow energy
spectrum.

The low energy spread and efficient acceleration of the
side injected electrons are also due to the fast rise in the
wake phase velocity just after the injection position, as
seen in Fig. 1(b). The electrons gain energy while staying
in the accelerating phase of the wake.

We have seen above that the growing mode (5) has
the low phase velocity (8). There is a way, however,
to manage the phase velocity of the wake by employ-
ing a gentle longitudinal plasma density gradient as it
was discussed in [17]. To elucidate the effect, we have
performed an additional simulation with the same beam
parameters, but introducing a positive plasma density
gradient: ne(z) = ne0(1 + z/d) with the characteristic
length d = 200m. The phase velocity obtained in this

Figure 4: (color online) Phase velocity control by positive
plasma density gradient. a) Phase velocity at z=2.5 m. b)
Full dynamics picture; the transparent plane marks the speed
of light.

simulation is shown in Fig. 4.

The phase velocity at the head of the beam takes a dive
as defined by the growing mode dispersion. However,
the positive plasma density gradient compensates for the
mode dispersion and at the tail of the beam the wake
phase velocity becomes equal to the speed of light and
even superluminous.

In summary, we have shown that the self-modulational
instability of a charged beam in plasma corresponds to
a growing mode with a slow phase velocity. The wake
velocity is much lower than that of the driver. The wake
slowdown is due to the real part of the frequency of the
unstable mode. Although this effect limits electron en-
ergy gain at the stage of the linear instability growth, the
low phase velocity can be harnessed to inject low energy
electrons into the wake of a highly relativistic driver. We
also have shown that the side injection of electrons at a
small angle with respect to the driver axis may drasti-
cally improve the quality of acceleration. The transverse
field of the wake sucks in the injected electrons and au-
tomatically puts them into the right acceleration phase.
Finally, we show that the wake phase velocity can be
controlled by a longitudinal plasma density gradient.
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