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Abstract

A long, relativistic particle beam propagating in an overdense plasma is subject to the self-

modulation instability. This instability is analyzed and the growth rate is calculated, including

the phase relation. The phase velocity of the wake is shown to be significantly less than the

beam velocity. These results indicate that the energy gain of a plasma accelerator driven by a

self-modulated beam will be severely limited by dephasing. In the long-beam, strongly-coupled

regime, dephasing is reached in a homogeneous plasma in less than four e-foldings, independent of

beam-plasma parameters.

PACS numbers: 52.40.Mj, 52.35.-g
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Plasma-based accelerators have attracted considerable attention owing to the ultrahigh

field gradients sustainable in an electron plasma wave, enabling compact accelerators. The

electric field amplitude of the electron plasma wave (space-charge oscillation) is on the order

of E0 = cmeωp/e, or E0[V/m] ≃ 96
√

n0[cm−3], where ωp = (4πn0e
2/me)

1/2 is the electron

plasma frequency, n0 is the ambient electron number density, me and e are the electron mass

and charge, respectively, and c is the speed of light in vacuum. This field amplitude can be

several orders of magnitude greater than conventional accelerators. Electron plasma waves

with relativistic phase velocities may be excited by the nonlinear ponderomotive force of an

intense laser [1] or the space-charge force of a charged particle beam, i.e., a plasma wakefield

accelerator (PWFA) [2, 3]. In 2006, high quality 1 GeV electron beams were produced using

using 40 TW laser pulses in cm-scale plasmas [4]. In 2007, a 42 GeV electron beam in a

meter-long plasma was used to double the energy of a small fraction of electrons on the

beam tail by the plasma wave excited by the beam head [5]. These experimental successes

have resulted in further interest in the development of plasma-based acceleration as a basis

for future linear colliders [6, 7].

It has recently been proposed to drive a plasma accelerator with a highly relativistic pro-

ton beam, such as those available at CERN (European Organization for Nuclear Research)

[8, 9]. In general, exciting plasma waves requires a drive beam density profile with frequency

components at the plasma frequency, i.e., a beam density longitudinal scale length on the

order of the plasma wavelength λp = 2π/kp = 2πc/ωp, or λp[µm] = 3.3 × 1010/
√

n[cm−3].

Compact, high-gradient accelerators require high plasma density, and therefore require short

drive beams, e.g., λp ∼ 100 µm for n0 ∼ 1017 cm−3. Generating short proton beams (or

proton beams with spatial structure at λp) is challenging, and it has been proposed to rely

on a beam-plasma instability to modulate the beam at λp, driving a large amplitude plasma

wave [10]. The self-modulation of the beam occurs through coupling of the transverse wake-

field with the beam radius evolution. Periodic regions of focusing and defocusing modulate

the beam density at λp, driving a larger plasma density modulation that further focuses

the beam periodically. For beams long compared to λp, where self-modulation occurs, the

instability is enabled by the drive beam dynamics, and therefore the wakefield properties

will be strongly affected by the drive beam dynamics.

An important quantity characterizing the performance of a plasma accelerator is the

phase velocity vp of the plasma wave. For vp < c, a highly relativistic electron will outrun
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the plasma wave and phase slip from the accelerating to the decelerating phase region of

the plasma wave. This limits the electron energy gain to ∆W ∼ γ2p(Ez/E0)mec
2 after

acceleration over a dephasing length Ld ∼ γ2pλp, where Ez is the electric field amplitude of

the plasma wave and γp = (1−v2p/c2)−1/2. For a plasma accelerator driven by a short (< λp)

intense laser pulse, vp can be relatively low (γp ∼ 10 − 100) and dephasing can limit the

energy gain [11]. For a PWFA driven by a short (< λp) highly-relativistic beam, vp can be

sufficiently high so that dephasing is not an issue.

In this Letter we calculate the self-modulation of particle beams in plasma, including

the properties of the excited plasma wave. In particular, we show that the phase velocity

of the plasma wave excited by self-modulation is greatly reduced from the velocity of the

drive beam. The phase velocity is determined by the growth of the instability and the

beam-plasma dynamics. A similar effect occurs in self-modulated laser-driven plasma waves

[12–14]. Analytic solutions for the growth rate and phase velocity in the long beam regime

are derived and compared to numerical solutions of the envelope equation for the particle

beam. Owing to the low phase velocity of the plasma wave, the maximum energy gain in

such a self-modulated beam-driven accelerator will be severely limited by dephasing.

The wake generated by a relativistic particle beam driver moving through an initially

neutral plasma can be calculated using the cold plasma fluid and Maxwell equations. Here

we consider a drive beam consisting of particles with charge ∓e and mass Mb. In the linear

wake regime, the normalized electron plasma density perturbation δn/n0 = (n−n0)/n0 < 1

driven by a beam with density nb < n0 is

(

∂2ζ + k2p
)

δn/n0 = ∓k2pnb/n0, (1)

where the ∓ corresponds to a negatively/positively charged particle beam. A highly rela-

tivistic beam is assumed with Lorentz factor γ = (1 − β2

b )
−1/2 ≫ 1, and the quasi-static

approximation is taken such that the plasma fluid quantities are functions of the co-moving

variable ζ = z− βbt. The beam-driven longitudinal electric field Ez and transverse fields Er

and Bθ are [15]

(

∇2

⊥
− k2p

)

Ez/E0 = −kp∂ζδn/n0, (2)
(

∇2

⊥
− k2p

)

(Er − Bθ)/E0 = −kp∂rδn/n0. (3)

The transverse beam-driven wakefield Eq. (3) is coupled to the envelope equation for the
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beam [16]
d2R

dz2
− ǫ2n

4γ2R3
= ∓ 1

γR

me

Mb
〈kpr (Er − Bθ) /E0〉 , (4)

where R = 〈r2〉1/2 is the rms beam size, ǫn = γ[〈r2〉〈(dr/dz)2〉 − 〈rdr/dz〉2]1/2/2 is the nor-

malized transverse emittance in cylindrical geometry, and the brackets indicate an average

over the transverse beam distribution.

For simplicity, we consider a beam with a flat-top radial profile, nb = [nb0r
2

b0/r
2

b ]f(ζ)Θ(rb−
r), where nb0 is the initial peak density, f is the normalized longitudinal profile, Θ is the

Heaviside function, rb(ζ, z) is the beam radius, and rb0 = rb(ζ, z = 0) is the initial beam

radius. Using the solution to Eqs. (1) and (3) for a flat-top radial beam profile in Eq. (4)

yields the envelope equation for the beam radius rb(ζ, z) =
√
2R at any slice ζ

d2rb
dz2

− ǫ2n
γ2r3b

= −4k2br
2

b0I2(kprb)

γrb

∫ ζ

∞

dζ ′ sin[kp(ζ − ζ ′)]f(ζ ′)K1(kprb(ζ
′))/rb(ζ

′), (5)

where k2b = 4πnb0e
2/Mbc

2 is plasma wavenumber of the beam. Here Im and Km are the mod-

ified Bessel functions and we assumed the initial radius rb0 is independent of ζ . Equation (5)

describes the coupled beam evolution and wakefield excitation.

Consider a small perturbation about the long beam (where variation in the longitudinal

beam profile may be neglected) equilibrium radius r0, satisfiying ǫ
2

nkp = 4γk2br
3

0
K1(kpr0)I2(kpr0).

Assuming a small perturbation about this equilibrium, rb = r0 + r1 with |r1/r0| ≪ 1 and

rb0 = r0, Eq. (5) yields the evolution of the beam radius perturbation

(

d2

dẑ2
+ 4κ2

)

r1 = 2ν

∫ ζ

∞

dζ̂ ′ sin(ζ̂ − ζ̂ ′)r1(ζ̂
′), (6)

with the constants ν = 4I2(kpr0)K2(kpr0) and

κ2 = 2K1(kpr0)

[

4
I2(kpr0)

kpr0
+ I3(kpr0)

]

, (7)

and the normalized variables ζ̂ = kpζ and ẑ = kbz/(2γ)
1/2. In the limit of a narrow beam

kpr0 ≪ 1, ν ≃ 1−(kpr0)
2/6, and κ2 ≃ 1+(kpr0)

2[Cγ−1/4+ln(kpr0/2)]/2, where Cγ ≃ 0.577.

Equation (6) may be analyzed in several regimes. The most relevant regime for plasma

accelerators based on self-modulated drive beams is the strongly-coupled (or long-beam,

early-time) regime valid for ζ̂ ≫ ẑ.

Consider a slowly varying envelope, such that r1 = r̂ exp(ikpζ)/2+c.c. with |∂ζ r̂| ≪ |kpr̂|,
and assume the strongly-coupled regime where the growth length of the instability is short
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compared to γ1/2k−1

b , such that |∂ẑ r̂| ≫ 2κ|r̂|. In this regime, after applying the linear

plasma wave operator, Eq. (6) becomes

(

∂ζ̂∂
2

ẑ + iν
)

r̂ = 0, (8)

which describes the evolution of the slowly varying amplitude of the beam radius pertur-

bation and may be solved using standard Laplace transform techniques. With the initial

conditions r̂(z, ζ = 0) = δrΘ(z), r̂(z = 0, ζ) = δr, and ∂z r̂(z = 0, ζ) = 0, the solution to

Eq. (8) can be expressed as

r̂/δr =

∞
∑

n=0

(iν|ζ̂|ẑ2)n
n!(2n)!

. (9)

The solution to Eq. (8) may also be evaluated asymptotically and has the form

r1 = δr
31/4

(8π)1/2
N−1/2eN cos

(

π/12− kpζ −N/
√
3
)

, (10)

where the number of e-foldings is

N =
33/2

4

(

ν
nb0me

n0Mbγ
k3p|ζ |z2

)1/3

. (11)

Note that growth Eq. (11) [and the beam envelope equation, Eq. (5)] differ from that found

in Ref. [10]. Behind the modulated beam the growth is given by Eq. (11) with |ζ | = Lb, where

Lb is the bunch length. Hence, for fixed rb0, the growth scales as N ∝ (nb0Lb)
1/3 ∝ Q

1/3
b ,

where Qb is the beam charge.

Figure 1 shows the beam radius modulation rb/r0 = 1 + r1 versus kpζ , after propagating

kpz = 28000 (red curve) and kpz = 25000 (blue curve), obtained from numerical solution of

Eq. (5) for a beam initially in equilibrium rb0 = r0 with beam-plasma parameters nb/n0 =

0.008, γ = 480, and kpr0 = 1. The dashed curves are the envelope of the linear asymptotic

solution Eq. (10). Figure 1 shows the growth versus distance behind the head of the beam

(at kpζ = 0) and versus propagation distance. Also shown is the shift in phase of the

modulation versus propagation distance, resulting in a reduced phase velocity. Physically

the peaks of the focusing force (transverse wakefield) lag behind (shifted in phase by 2π/3)

the peaks of the beam density. This phase shift results in the peaks of the beam density

modulation moving back toward the peaks in the focusing force, reducing the phase velocity

of the modulation with respect to the beam velocity.

The above solution Eq. (9) assumed |kpr̂| ≫ |∂ζ r̂|, or 1 ≫ |k−1

p (∂ζN)|. This condition

may be approximately expressed as ζ̂ ≫ ẑ, which will be satisfied for long beams sufficiently
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FIG. 1. (Color online) Beam radius modulation rb/r0 vs kpζ with beam-plasma parameters nb/n0 =

0.008 (proton beam), γ = 480, and kpr0 = 1 (and rb0 = r0), obtained from numerical solution of

Eq. (5), at kpz = 25000 (blue curve) and kpz = 28000 (red curve). Dashed curves are the envelope

of the asymptotic linear solution Eq. (10).

early in the beam propagation. It was also assumed that |∂ẑ r̂| ≫ 2κ|r̂|, which is satisfied

provided ζ̂ ≫ ẑ is satisfied. The above analysis is also based on linear theory, and nonlinear

effects (i.e., when r1 ∼ r0 or Ez ∼ E0) may saturate the instability.

The beam radius perturbation r1 = r̂ exp(ikpζ)/2 + c.c. modulates beam density nb ≃
nb(r0)(1 − 2r1/r0) + nb0r1δ(r0 − r). This beam density modulation drives a modulation in

the electron plasma density n̂ exp(ikpζ)/2 + c.c., via Eq. (1), i.e., ∂ζ n̂ ≃ ∓ikpnb0[Θ(r0 −
r)− δ(r0 − r)r0/2](r̂/r0). The plasma density modulation drives the accelerating wakefield

Ez/E0 = Êz exp(ikpζ)/2 + c.c., via Eq. (2), i.e., (∇2

⊥
− k2p)Êz = −ik2pn̂/n0. For the same

initial conditions as above, the solution for the accelerating wakefield in the long-beam

regime is

Êz = ∓HR(r, r0)
nb0

n0

δr

r0
|ζ̂|

∞
∑

n=0

(iν|ζ̂ |ẑ2)n
(n+ 1)!(2n)!

, (12)

whereHR(r, r0) = 1−kpr0K1(kpr0)I0(kpr)−I0(kpr)K0(kpr0)r
2

0
/2 for r ≤ r0 and kpr0I1(kpr0)K0(kpr)−

I0(kpr0)K0(kpr)r
2

0
/2 for r > r0. In the asymptotic limit, the accelerating wakefield has the

form Ez/Ez(z = 0) ≃ 37/4(32π)−1/2N−3/2 exp(N) cos(ψ), where the number of e-foldings of

growth of the accelerating wake is given by Eq. (11) and the phase is

ψ =
π

4
− kpζ −

3

4

(

ν
k2bkp
γ

|ζ |z2
)1/3

. (13)

The phase velocity of the accelerating wake is βp = −∂tψ/∂zψ = ∂ζψ/(∂ζ + ∂z)ψ ≃
1 − ∂zψ/∂ζψ. Using the phase Eq. (13), the phase velocity is βp ≃ 1 + k−1

p ∂zψ = 1 −
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FIG. 2. (Color online) Normalized phase velocity of accelerating wakefield γp[ν(kb/kp)
2|ζ̂|/γ]−1/4

vs. normalized propagation distance (ν|ζ̂|)1/2ẑ in the long-beam regime: solid (black) curve is the

series solution Eq. (12), dashed (red) curve is the asymptotic solution Eq. (14), and dots (blue)

are from the numerical solution of the envelope equation Eq. (5).

(2/33/2)(N/kpz). The phase velocity of the self-modulated beam-driven wakefield is less than

the beam velocity βb ≃ 1, varies along the beam ζ and during propagation z. Asymptotically,

the Lorentz factor of the phase velocity is

γp =

(

γn0Mb

νnb0me

z

|ζ |

)1/6

. (14)

Note that, behind the modulated beam the phase velocity is given by Eq. (14) with |ζ | = Lb.

Figure 2 shows the normalized Lorentz factor of the phase velocity of the accelerating

wakefield γp[ν(kb/kp)
2|ζ̂|/γ]−1/4 versus normalized propagation distance (ν|ζ̂|)1/2ẑ. The solid

curve in Fig. 2 is obtained from the series solution Eq. (12), βp = 1−|k−1

p ∂z[arctan(ℑÊz/ℜÊz)]|,
the dashed curve is the asymptotic solution Eq. (14), and the dots are from the numerical

solution (with the parameters γ = 480, nb0/n0 = 0.008, kpr0 = 1, and kpLb = 715) of the

envelope equation Eq. (5). Figure 2 indicates that there is a minimum phase velocity. The

minimum phase velocity can be estimated by using Eq. (12). The minimum phase velocity

occurs at (ν|ζ̂|)1/2ẑ ≃ 1.72, with

γmin ≃ 1.05

(

γn0Mb

νnb0mekp|ζ |

)1/4

. (15)

As shown in Fig. 2, after reaching γmin, the phase velocity grows slowly as the beam prop-

agates γp ∝ z1/6 [cf. Eq. (14)]. For example, consider a wake driven by a 450 GeV proton

beam (γ = 480), with r0 = 180 µm, Lb = 12 cm, and 1011 particles (i.e., near the param-

eters of the CERN Super Proton Synchrotron). Operating at n0 = 1015 cm−3, corresponds
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to nb0/n0 = 0.008, E0 = 3 GV/m, kpr0 = 1.0, kpLb = 715, and ν = 0.88. For this example,

γmin ≃ 21 behind the drive beam after z ≃ 17 cm (i.e., ≈ 160 λp) of propagation.

With the phase velocity of the self-modulated wake determined, the dephasing length

may be calculated. For a linear wake, the dephasing length is the propagation distance

required for an ultra-relativistic particle βb ≃ 1 to slip λp/4 (or a wake phase of π/2)

with respect to the plasma wave. Assuming the phase velocity is well-approximated by the

asymptotic solution in the strongly-coupled regime Eq. (14), the dephasing length is Ld =

(2π/3)3/2(νk2bkp|ζi|/γ)−1/2. Including the early time response via Eq. (12), the dephasing

length is

Ld ≃ 4.9
(

νk2bkp|ζi|/γ
)−1/2

, (16)

where ζi is the injection position of the witness bunch (e.g., initially at a peak of the accel-

erating field). For a witness bunch injected behind the drive beam, |ζi| = Lb. This reduced

dephasing length will greatly limit the energy gain of a witness electron beam trailing the

drive bunch. For example the number of e-foldings of the self-modulational instability that

have occurred at the dephasing length Eq. (16) is N(z = Ld, ζi) ≃ 3.8. Note that the num-

ber of e-foldings at a dephasing length N(z = Ld) is independent of injection location and

the beam-plasma parameters. After a dephasing length, the witness beam will move into a

decelerating phase, and then into a defocusing phase of the plasma wave (which will scatter

the beam transversely).

The number of e-foldings required to reach an interesting accelerating gradient will be

determined by the instability seed. Assuming the beam is Gaussian, the seed generated

by the wake of the long beam envelope is δnseed/n0 ≈ (2π)1/2(kpσz) exp[−(kpσz)
2/2]nb0/n0,

which vanishes for kpσz ≫ 1, where σz is the rms bunch length. One possibility to seed the

modulation is using a leading intense short-pulse laser or short electron bunch that drives

a wake. Consider a seed Ez,seed/E0 ≃ 10−2 (i.e., Ez,seed ≃ 30 MV/m at n0 = 1015 cm−3)

driven by a resonant laser pulse (requiring a 93 TW, 130 J, 0.8 µm wavelength pulse with

spot size kprL = 2 and laser strength parameter a0 = 0.165). The peak electric field after a

dephasing length is Ez ≈ 106 MV/m, and the energy gain of a trailing electron beam after a

dephasing length (≈ 34 cm) is ≈ 10 MeV, assuming a wakefield driven by a self-modulated

450 GeV proton beam with nb0/n0 = 0.008, kpr0 = 1, kpLb = 715, and n0 = 1015 cm−3.

Improved efficiency may be possible by tapering the plasma density, i.e., increasing the

background plasma density to reduce the plasma wavelength, thereby increasing the phase
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velocity [17], although variation of the plasma density may affect the instability growth.

Alternatively the accelerator may use a staged approach, where a long plasma region self-

modulates the drive beam until saturation of the instability, followed by a second stage where

a witness bunch would be injected following the modulated drive beam. Such a two-staged

approach could potentially be limited by the hose (or transverse two-stream) instability [18],

which grows in the long beam limit with a comparable growth rate ∼ N . This implies that to

drive large amplitude accelerating fields via the self-modulational instability without hosing

requires strongly seeding the self-modulational instability.

The long-beam, early-time regime described above will be valid for ẑ ≪ ζ̂. After suffi-

ciently long propagation distances, or for sufficiently short beams, the instability may enter

a weakly-coupled regime where the instability growth length is long compared to γ1/2/kb.

The instability will transition to the weakly-coupled regime after a propagation distance

approximately ẑ ∼ ζ̂, or, using Eq. (11), after approximately N ∼ kpζ . For long beams

kpζ ≫ 1, nonlinear effects will typically appear before the instability enters the weakly-

coupled regime.

In this Letter we have calculated the beam self-modulation instability growth rate, in the

long-beam regime, including the phase dependence. The phase velocity of the accelerating

wakefield was calculated and shown to be significantly less than the drive beam velocity.

The dephasing length was calculated, and a witness beam will reach dephasing in less than

four e-foldings, independent of beam-plasma parameters. This indicates that the energy

gain in a plasma accelerator driven by a self-modulated PWFA in a homogeneous plasma

will be limited by dephasing.
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