

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Predicting High Harmonic Ion Cyclotron Heating Efficiency in Tokamak Plasmas

D. L. Green, L. A. Berry, G. Chen, P. M. Ryan, J. M. Canik, and E. F. Jaeger Phys. Rev. Lett. **107**, 145001 — Published 26 September 2011 DOI: 10.1103/PhysRevLett.107.145001 1

2

3

4

5

6

8

Predicting high harmonic ion cyclotron heating efficiency in Tokamak plasmas

D. L. Green,^{*} L. A. Berry, G. Chen, P. M. Ryan, and J. M. Canik Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6169, USA

E. F. Jaeger

7 XCEL Engineering Inc., 1066 Commerce Park Dr., Oak Ridge, TN 37830, USA

(Center for Simulation of Wave-Plasma Interactions SciDAC)

Abstract

Observations of improved radio frequency (RF) heating efficiency in ITER relevant highconfinement (H-) mode plasmas on the National Spherical Tokamak Experiment (NSTX) are investigated by whole-device linear simulation. The steady-state RF electric field is calculated for various antenna spectra and the results examined for characteristics that correlate with observations of improved or reduced RF heating efficiency. We find that launching toroidal wave-numbers that give fast-wave propagation in the scrape-off plasma excites large amplitude (\sim kVm⁻¹) coaxial standing modes between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggests that these modes are a probable cause of degraded heating efficiency.

9 PACS numbers: 52.35.-g,52.50.Qt,52.55.Fa,52.65.-y

10 INTRODUCTION

Our understanding of magnetically confined nuclear fusion has progressed to a state 11 ¹² where net energy production is within reach. The next step towards achieving this goal is ¹³ ITER^[1], a reactor scale Tokamak currently under construction in Cadarache, France. To $_{14}$ achieve fusion, ITER's plasma will be heated to ${\sim}20~{\rm keV}$ using 50 MW of external heating ¹⁵ power from combined neutral beam injection (NBI) and both electron- and ion-cyclotron (IC) frequency RF waves. The RF waves are also used to drive current in order to control the 16 ¹⁷ background magnetic field and non-inductively sustain the plasma. In this paper we show ¹⁸ that RF power in the IC frequency regime can excite normal modes of the plasma edge, ¹⁹ whose presence correlates with decreased heating efficiency. This investigation is enabled by 20 advances to the state-of-the-art in predictive computer simulation of IC heating and current ²¹ drive (CD) for Tokamak plasmas relevant to ITER. Specifically, we use the first simulation to 22 solve for the linear RF wave fields in a realistic whole-device configuration while maintaining ²³ all required kinetic physics for ITER relevant heating scenarios. We solve self consistently ²⁴ for wave fields in both the well-confined core plasma and poorly confined scrape-off plasma ²⁵ (see Fig. 2). An ability to predict efficiency and performance of IC heating on ITER, and ²⁶ thus optimize heating scenarios, will be essential to the development of an economically 27 viable magnetic confinement fusion power source. Such an ability will require high fidelity ²⁸ whole-device simulation with the work presented here being a step toward that goal. In ²⁹ addition, this work is relevant to general plasma wave propagation regimes where kinetic 30 effects and strong density gradients across a boundary of open and closed magnetic field ³¹ lines are important, e.g., kinetic Alfvén waves at the Earth's magnetopause[2]. Significant ³² progress in predicting the plasma response to ICRF waves in Tokamak plasmas has been ³³ achieved [3–5], largely coupled to the availability of leadership class computing facilities such ³⁴ as the Jaguar machine at the National Center for Computational Sciences. ITER D-T ³⁵ scenarios will be fast-wave heated at the first harmonic of deuterium and second of tritium. While high-harmonic fast-wave (HHFW) heating is used on the National Spherical Tokamak ³⁷ Experiment (NSTX)[6], for the present investigation of coupling fast-wave power from the ³⁸ antenna to the core plasma, NSTX provides a suitable testbed. Here we compare results ³⁹ from the whole-device (2- and 3-D, antenna-to-core) simulation with recent experimental ⁴⁰ observations of improved IC heating efficiency on NSTX for a NBI H-mode scenario.

The NSTX IC antenna consists of a 12 strap phased array which toroidally spans $\sim 90^{\circ}$ 41 ⁴² (see Fig. 3) and is capable of launching 6 MW of electromagnetic fast-wave power at 30 MHz. ⁴³ The fast-wave is typically strongly damped on electrons in a single pass through the core ⁴⁴ plasma via transit time magnetic pumping and electron Landau damping^[7]. Using six de-45 coupled power sources gives good control over the toroidal wave-number (k_{ϕ}) of the launched ⁴⁶ wave. Experimental observations on NSTX show poor heating efficiency for small k_{ϕ} in both ⁴⁷ L-[8] and H-mode[9] scenarios. Heating efficiency was determined in these experiments by 48 the correlation between launched RF power and measured increase in plasma stored en-49 ergy for electrons (W_e) using a Thomson scattering diagnostic for kinetic electron pressure $_{50}$ (c.f. Fig. 2 of Ref. [8]). Since small k_{ϕ} waves are desired for their current drive efficiency ⁵¹ characteristics[10], understanding why RF heating efficiency is poor for small k_{ϕ} is of im-52 portance. The dependence of heating efficiency on the launched k_{ϕ} has been interpreted ⁵³ by Refs. [8, 11] in terms of the location where the fast-wave transitions from evanescent in 54 the antenna near-field to a propagating wave, i.e., the cutoff/onset location for fast-wave ⁵⁵ propagation. For scenarios with improved heating efficiency, the hypothesis is that this ⁵⁶ location is inside the core plasma (high temperature and pressure) defined by closed mag-57 netic flux surfaces (c.f., Fig. 2). Poor efficiency heating scenarios are expected to have the ⁵⁸ onset location in the scrape-off plasma (low temperature and pressure) that exists on open ⁵⁹ magnetic field lines near the wall and encompasses the antenna. This is explained using a $_{60}$ 0-D dispersion relation analysis where, given the confining magnetic field strength (B) and ⁶¹ launched toroidal wave-number, the onset density for fast-wave propagation is shown to be ⁶² approximately proportional to Bk_{ϕ}^2/ω where ω is the angular RF frequency. Due to the $\frac{1}{R}$ $_{63}$ fall off in toroidal magnetic field strength with radius (R) from the device center stack (c.f., ⁶⁴ Fig. 3), launching a larger k_{ϕ} or increasing B effectively pushes the onset location away from ⁶⁵ the antenna and further into the plasma. It is suggested by Refs. [8, 11] that fast-wave propagation in the scrape-off plasma can cause decreased RF heating efficiency due to possible 66 67 formation of coaxial modes and damping of these edge waves via sheath effects or collisions 68 in the low temperature plasma.

⁶⁹ By retaining all relevant kinetic effects for the hot core plasma, including realistic density ⁷⁰ and temperature gradients between the core and scrape-off plasmas, and solving for the ⁷¹ wave field out to the limiting vacuum vessel structures, we show that fast-wave propagation ⁷² in the edge plasma is a plausible explanation for the observed degradation in RF heating

FIG. 1. Midplane profiles for NSTX shot 130608 as used in the simulations presented here. Electron density (n_e) and temperature (T_e) are from multi-point Thomson scattering (MPTS) data, ion temperature (T_i) is from charge exchange recombination spectroscopy (CHERS) data and the NBI fast-ion density (n_i) is from TRANSP[12] simulation. a = 1.52 m is the minor radius.

⁷³ efficiency. The following full-wave analysis reveals RF excited normal modes. These modes⁷⁴ are not seen in linear plasma wave dispersion relation or ray tracing approaches.

75 SIMULATION DETAILS

The simulation of RF wave propagation in hot plasmas is complicated by a non-local plasma response. Assuming a linear medium where the wave energy is much less than the plasma stored energy, the problem is typically Fourier transformed in space and time to a frequency domain Helmholtz wave equation containing a hot plasma dielectric tensor[13] that, due to the spatial non-locality, has a dependence on wave-number. Furthermore, in the magnetised plasmas considered here, the medium is highly anisotropic. As such, the dielectric is separated into directions parallel (||) and perpendicular (\perp) to the confining magnetic field. However, the inclusion of a scrape-off plasma requires solving the Helmholtz

FIG. 2. 2-D AORSA simulation results of the steady-state wave electric field amplitude for HHFW on NSTX. The dashed line shows an approximate fast-wave cutoff based on a 0-D dispersion calculation using $k_{\parallel} \approx k_{\phi} = n_{\phi}/R$. The separatrix is shown in purple, closed magnetic flux surfaces of the core plasma are in red and open flux surfaces of the scrape-off plasma are in blue.

system across the boundary between closed and open magnetic field lines (separatrix, c.f., Fig. 2). Most hot plasma simulations use magnetic flux surface coordinates which break down at the separatrix. For this reason we utilize a spectral representation in all spatial directions via the All ORders Spectral Algorithm (AORSA)[3]. AORSA uses Cartesian coordinates such that the directions for the spectral decomposition of the $\vec{\nabla} \times \vec{\nabla} \times$ piece of the Helmholtz equation are chosen independently of the background magnetic field. Therefore, the boundary between open and closed magnetic field lines is not significant in AORSA and the addition of a scrape-off plasma is straight forward, although limited as will be discussed. Also, for the NSTX HHFW heating scenarios considered in this paper, the ion Larmor radius (ρ_i) can exceed the perpendicular wavelength $(k_{\perp}\rho_i \geq 1)$ and the ion cyclotron harmonic unmber (l) can be as high as 18. Being spectral (non-local) in all directions, AORSA ensures these physics are included. Such an approach produces a large dense matrix that require

(a) $\pm 180^{\circ}$ antenna phasing, dominant mode $k_{\phi} = \pm 13 \text{ m}^{-1}.$ (b) -30° antenna phasing, dominant mode $k_{\phi} = -3 \text{ m}^{-1}.$

FIG. 3. 3-D AORSA results for the steady-state wave electric field amplitude. The gold (solid) and gray (transparent) contours are 0.6 kVm^{-1} and are inside and outside the LCFS respectively. The antenna, center stack and sample magnetic field line trajectory are shown. Figures were created using VisIt (http://visit.llnl.gov/).

⁹⁶ leadership class computing facilities to factor and invert. The 3-D simulation presented here ⁹⁷ required ~ 20 k processor hours with each 2-D mode producing a matrix of ~ 1 TB.

⁹⁸ While extending AORSA to include a scrape-off plasma avoids boundary condition match-⁹⁹ ing problems associated with coupling a dedicated scrape-off plasma code to a core plasma ¹⁰⁰ code, it does come at a high computational cost that limits the scrape-off plasma resolution. ¹⁰¹ This restricts us to qualitative comparison with experiment. The low resolution limitation ¹⁰² is primarily due to the uniform spatial grid used by AORSA. At present there is no variable ¹⁰³ grid formulation of the Fourier spectral method compatible with the hot plasma dielectric ¹⁰⁴ tensor, and as such we cannot yet resolve the fine scale (mm) features of the antenna and ¹⁰⁵ Faraday shield.

Figure 1 shows the background density and temperature profiles used for the simulation. These were constructed to best match available experimental data from NSTX shot 130608 presented in Ref. [9]. This shot heats a NBI deuterium plasma with 1.8 MW of ICRF power. The equilibrium magnetic field is from an EFIT[14] reconstruction with a plasma current ¹¹⁰ of 0.99 MA (0.54 T on axis toroidal magnetic field strength). This is a H-mode shot where ¹¹¹ the density and temperature profiles exhibit a steep density gradient near the last closed ¹¹² magnetic flux surface (LCFS). 1-D midplane electron density (n_e) profiles are measured ¹¹³ with Thompson scattering in the core and with microwave reflectometry in the scrape-off ¹¹⁴ plasma. These data are mapped along closed flux surfaces to give 2-D profiles for the core ¹¹⁵ plasma. For estimating the 2-D scrape-off n_e profile experimental midplane data near the ¹¹⁶ LCFS are fit giving a decay of the form $n_e (\delta r) = 0.039 + 3.6 \exp (-147.0\delta r^{1.4}) \times 10^{19} \text{ m}^{-3}$ ¹¹⁷ where δr is distance from the LCFS. This approach gives profiles that decay to a constant ¹¹⁸ $n_e = 3.9 \times 10^{17} \text{ m}^{-3}$ within a few cm of the LCFS. In addition, this minimum value of ¹¹⁹ n_e in the scrape-off plasma is above that required for propagation of the short wavelength ¹²⁰ slow-wave mode[13]. As stated above, resolving such short wavelength modes will require ¹²¹ improvements to AORSA. A similar procedure is followed for the bulk temperatures and NBI ¹²² fast-ion density with the profiles shown in Fig. 1. The NBI fast-ion temperature profile is ¹²³ set to a flat 20 keV.

124 SIMULATION RESULTS

Figure 2 shows 2-D AORSA results for single toroidal modes n_{ϕ} = -22, and -5 (k_{ϕ} = 125 $-13 \text{ m}^{-1}, -3 \text{ m}^{-1}$) corresponding to the dominant mode of the antenna spectrum for $\pm 180^{\circ}$ $_{127}$ and -30° phasing respectively. A clear dependence on the launched toroidal wave-number can be seen. For large k_{ϕ} (-13m⁻¹) the fast-wave is seen to be evanescent in the scrape-off 128 plasma and begins to propagate at the core plasma where the density reaches the onset 129 value (dashed line in Fig. 2). The wave is seen to penetrate the core plasma and is refracted 130 back towards the low-field side before being absorbed primarily on electrons (56.5%) and 131 NBI fast-ions (36.1%). For small k_{ϕ} (-3 m⁻¹), there are large amplitude electric wave fields 132 ¹³³ between the core plasma density gradient near the last closed magnetic flux surface and the ¹³⁴ antenna/vessel wall. The field magnitude plot shows a null indicating a standing coaxial ¹³⁵ mode as predicted by Ref. [8].

Figure 3 shows the 0.6kVm^{-1} contour of the 3-D electric wave field magnitude as calcu-137 lated from the sum over $-50 \le n_{\phi} \le 50$ with toroidal mode spectral weightings calculated 138 for antenna phasings of $\pm 180^{\circ}$ and -30° . Fig. 3a shows little fast-wave presence in the 139 scrape-off plasma, and significant penetration of the core plasma. Fig. 3b shows consider¹⁴⁰ able fast-wave in the scrape-off plasma and poor core penetration.

141 SUMMARY AND CONCULUSIONS

The first whole-device 3-D HHFW simulation to include realistic edge density profiles for 143 a H-mode plasma, while retaining all-orders in $k_{\perp}\rho_i$ and harmonic number are presented. 144 In addition to the typical fast-wave damping on electrons and NBI fast-ions in the core 145 plasma is a standing coaxial mode in the scrape-off plasma seen to be excited to large 146 amplitude. Assuming the large amplitude coaxial mode is damped on collisions or non-linear 147 phenomena[15] (parasitic loss of power that would otherwise end up in the core plasma), we 148 see qualitative agreement between simulation and experiment that supports the hypothesis 149 that excitation of coaxial edge modes reduce ICRF heating efficiency.

The conclusions of this work have implications for ITER, where the separatrix-wall dis-150 tance is large (10 to 20 cm). It may prove difficult to control the edge density in such a 151 large region to below that for fast-wave propagation. Assuming an electron density at the 152 separatrix in ITER of $n_0 = 1 \times 10^{19} \text{ m}^{-3}$, with a decay in the scrape-off plasma of the 153 form $n(\delta r) = n_0 \exp(-\delta r/l_{SOL})$ where δr is the distance from the LCFS and $l_{SOL} = 4$ cm 154 is the scrape-off plasma decay length, the onset location for fast-wave propagation for the 155 dominant mode for -90° antenna phasing $(n_{\phi} = -32, k_{\phi} = -3.84 \text{ m}^{-1})$ is 11 cm from the 156 wall, well within the scrape-off plasma. Therefore, optimizing the scrape-off plasma density 157 profile will be important for ICRF heating efficiency on ITER. 158

Future work will focus on quantitative comparison of the scrape-off plasma electric field magnitudes with direct experimental observation and further improving predictive capability for ITER. This will require improving the resolution in the scrape-off plasma to resolve the antenna and Faraday shield. Also, the linear wave amplitude in the scrape-off plasma will be provided as invaluable input data to non-linear simulations.

The authors wish to thank Benoit P. LeBlanc for providing TRANSP NBI profile data. This research used resources of the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at Oak Ridge National Laboratory, and the National Energy Research Scientific Computing Center supported by the Office of Science of the Department of Energy under Contracts DE-AC05-00OR22725 and DE-AC02-05CH11231 respectively.

- ¹⁷⁰ * greendl1@ornl.gov
- [1] N. Holtkamp, Fusion Engineering and Design 82, 427 (2007), proceedings of the 24th Symposium on Fusion Technology SOFT-24.
- 173 [2] J. R. Johnson and C. Z. Cheng, Geophys. Res. Lett. 24, 1423 (1997).
- [3] E. F. Jaeger, L. A. Berry, J. R. Myra, D. B. Batchelor, E. D'Azevedo, P. T. Bonoli, C. K.
 Phillips, D. N. Smithe, D. A. D'Ippolito, *et al.*, Phys. Rev. Lett. **90**, 195001 (2003).
- 176 [4] E. Jaeger, R. Harvey, L. Berry, J. Myra, R. Dumont, C. Phillips, D. Smithe, R. Barrett,
- D. Batchelor, P. Bonoli, M. Carter, E. D'azevedo, D. D'ippolito, R. Moore, and J. Wright, Nuclear Fusion **46**, S397 (2006).
- [5] D. L. Green, E. F. Jaeger, and L. A. Berry (RF-SciDAC Team), Journal of Physics: Conference Series 180, 012058 (2009).
- 181 [6] M. Ono, S. Kaye, Y.-K. Peng, G. Barnes, W. Blanchard, M. Carter, J. Chrzanowski, L. Dudek,
- R. Ewig, D. Gates, R. Hatcher, T. Jarboe, S. Jardin, D. Johnson, R. Kaita, M. Kalish, et al.
 (NSTX Team), Nuclear Fusion 40, 557 (2000).
- 184 [7] M. Ono, Physics of Plasmas 2, 4075 (1995).
- 185 [8] J. Hosea, R. E. Bell, B. P. LeBlanc, C. K. Phillips, G. Taylor, E. Valeo, J. R. Wilson, E. F.
- Jaeger, P. M. Ryan, J. Wilgen, et al. (NSTX Team), Physics of Plasmas 15, 056104 (2008).
- 187 [9] G. Taylor, R. E. Bell, J. C. Hosea, B. P. LeBlanc, C. K. Phillips, M. Podesta, E. J. Valeo,
- J. R. Wilson, J.-W. Ahn, G. Chen, D. L. Green, E. F. Jaeger, *et al.* (NSTX Team), Physics
 of Plasmas 17, 056114 (2010).
- ¹⁹⁰ [10] M. Brambilla, *Kinetic Theory of Plasma Waves* (Oxford University Press Inc., New York,
 ¹⁹¹ 1998).
- ¹⁹² [11] C. Phillips, R. Bell, L. Berry, P. Bonoli, R. Harvey, J. Hosea, E. Jaeger, B. LeBlanc, P. Ryan,
 ¹⁹³ G. Tavlor, *et al.* (NSTX Team), Nuclear Fusion 49, 075015 (2009).
- ¹⁹⁴ [12] R. Budny, M. Bell, A. Janos, D. Jassby, L. Johnson, D. Mansfield, D. McCune, M. Redi,
 J. Schivell, G. Taylor, T. Terpstra, M. Zarnstorff, and S. Zweben, Nuclear Fusion 35, 1497
 (1995).
- 197 [13] T. H. Stix, Waves in plasmas (Springer-Verlag New York, Inc., 1992).
- 198 [14] S. Sabbagh, S. Kaye, J. Menard, F. Paoletti, M. Bell, R. Bell, J. Bialek, M. Bitter, E. Fredrick-

- 199 son, D. Gates, A. Glasser, H. Kugel, L. Lao, B. LeBlanc, R. Maingi, et al. (NSTX Team),
- 200 Nuclear Fusion **41**, 1601 (2001).
- ²⁰¹ [15] D. A. D'Ippolito and J. R. Myra, Physics of Plasmas **13**, 102508 (2006).