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We have directly resolved shock structures in pure aluminum in the first few hundred picoseconds 

subsequent to a dynamic load, at peak stresses up to 43 GPa and strain rates of in excess of 1010 s-1.  

For strong shocks we obtain peak stresses, strain rates, and rise times.  From these data, we directly 

validate the invariance of the dissipative action in the strong shock regime, and by comparing with 

data obtained at much lower strain rates show that this invariance is observed over at least 5 orders 

of magnitude in the strain rate. Over the same range, we similarly validate the fourth-power scaling of 

strain rate with peak stress (the Swegle-Grady relation).  

Controlled shock compression1 has been used for decades to examine the behavior of materials under 

extreme conditions of pressure and temperature. In solids, a sufficiently large amplitude shock produces 

irreversible plastic deformation and relaxes the initial anisotropic stress. As the amplitude continues to 

increase, and if the shock drive is maintained, a steady-wave shock profile evolves, which propagates 

indefinitely without change in form2.  This steadiness is due to the attainment of a stable balance 

between the competing effects of a nonlinear stress-strain response and dissipative or viscous material 

behavior3,4 (tending to steepen and broaden the shock profile, respectively). However, despite its 

importance in numerous contexts a fundamental understanding of shock-induced deformation is still 

lacking. In particular, little is understood about the behavior of materials, including metals5, during the 

initial phase of shock compression and at high strain rates6. To a large extent this is a consequence of 

the relevant time scale which becomes extremely short at even quite small shock stresses7.  Thus shock 

wave profiles, although retaining finite rise times, often cannot be sufficiently well resolved to permit 

quantitative conclusions.  A relevant example is shock compression in aluminum.  Despite it being a very 

commonly studied and employed metal in shock wave experiments, there are no directly relevant data 

above strain rates of ~ 107 s-1, and recent theoretical models are still compared to data obtained 40 

years ago18,19,4. We note too that such low strain rates correspond to stresses well below the strong 
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shock threshold, or overdriven stress, ߪை.  This historical lack of sufficient time resolution20 has 

precluded testing, at high strain rates, potentially fundamental scaling laws whose verification depend 

directly on the ability to resolve shock wave profiles.  These include one of the most general thus far 

observed which is that the product of the specific energy dissipated by the shock and the time over 

which this takes place, is invariant4. As suggested by the discussion of Grady4, we refer to this product as 

the dissipative action, ܣ.     

Within the last 15 years, very high time resolution has been achieved using laser-based techniques8,10-17, 

however a physical picture of plasticity that is clearly consistent or inconsistent with longer time scale 

experiments has not yet emerged.  Here we measure shock rises in aluminum above  ߪை, and obtain 

shock stresses, shock widths, and strain rates. We use these data to test the validity, at ultrahigh strain 

rates, of the invariance of the dissipative action as well as related scaling laws such as the fourth power 

dependence of the strain rate, ߟሶ , on the shock stress, ߪ. 

For a well-defined and steady shock, equation of state data may be inferred from measured values of 

the shock and particle velocities,  ݑ௦ and ݑ௣, respectively, via the Rankine-Hugoniot relations1 . In the 

case of an optical technique15 and a metal sample this implies measurement of the propagation time of 

the shock through the sample and of the time history of the position of the metal surface in response to 

the arrival of the shock.  A schematic of the experiment is shown in Figure 1.  The arrival time of a shock 

at the free surface of the lower step (of thickness ݄ଵ ൌ 0.72 µm) is first measured (in Position 1 of Fig. 1) 

to establish the time of injection of the nominally well-defined and fully steepened shock into the upper 

step (of total thickness ݄ଶ ൌ 1.44 μm). This approach minimizes spatial and temporal uncertainties 

associated with the formation of the shock due to plasma expansion which occurs over some finite but 

unknown depth. Another shock, in a separate shot, is then launched towards the surface of the upper 

step (Position 2)21-23.   
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Figure 2 shows two sets of free surface velocity (ݑ௙௦) histories for different pump pulse energies. Pump 

energy is larger for the histories of Fig. 2(a). The histories of Fig. 2(a) obtained at the two free surfaces 

(i.e Positions 1 and 2 of Fig. 1) are qualitatively similar; the initial rise in particular has the same simple 

shape. This rise is consistent with a one-wave shock structure in which the plastic shock has overtaken 

the elastic precursor, i.e. a strong or overdriven shock. Data of this type allow independent 

determination of ݑ௣ and ݑ௦ and thus shock stress and density. To determine ݑ௣, we assumed ݑ௣ ൌ  ,௦ݑ ௣by inspection of the initial rise22. To determineݑ ௙௦/2 and obtained the maximum value ofݑ

we divided the difference in step thickness, ݄ଶ െ ݄ଵ, by the difference in arrival times of the two rises 

(Fig. 4 of Ref 22). The time resolution is also sufficient to allow estimation, by inspection, of the rise 

time, Δݐ, and thus the plastic shock width, ݓ ൌ ௦ݑ ൈ  Furthermore, the slope of the linear part of the .ݐ߂

rise yields ݑሶ ௣௠௔௫ (Fig. 5, Ref. 24) and thus the strain rate, ߟሶ ൌ ሶݑ  ௣௠௔௫/ݑ௦. Fig. 2(b) by contrast shows 

structured rises whose shapes depend on propagation distance. These data are discussed in more detail 

in Ref. 22; here we analyze strong shocks (Table 1, Ref. 22) with the structure shown in Fig. 2(a) in order 

to make comparisons with the known Hugoniot of aluminum (Fig. 6 of Ref. 22, which shows our data for ݑ௣and ݑ௦ and reported values for 1100 Al24,25 and 6061 Al24. Average deviations of our steady data from 

the relation24 for 1100 Al of ݑ௦ ൌ 5.38 ൅  ௣ are less than a percent.). We note that the stress atݑ1.34

which we clearly observe one wave structures yields a lower limit for ߪை; specifically for propagation 

distances of 1.44 µm after initiation in aluminum, the overdriven threshold exceeds ~ 25 GPa.  This may 

be compared with the value obtained by intersecting the known ݑ௣- ݑ௦ relation with a constant elastic 

wave speed of 6.41 km s-1 of ~ 13.3 GPa (see note in Ref. 24).  

In Figure 3 we compare our measured widths to theoretical calculations for 6061-T6 Al by Molinari and 

Ravichandran18. The latter considered shock stresses in the range of 1 GPa to 15 GPa. By combining 

these results with ours we see that from 1 GPa to ~ 43 GPa the shock width decreases from ~ 10-20 cm 
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to ~ 0.2 micrometers, i.e. by a factor of more than 105! This implies that above 40 GPa the shock is fully 

risen within several hundred atomic layers.  On the basis of work by Bland26, Swegle and Grady3 define 

the dimensionless Bland number, ܤ ൌ  and ܿ are the ݏ ሶ/8ܿ, where ݄ is the sample thickness, andߟݏ3݄

slope and the intercept respectively of the ݑ௣- ݑ௦ relation. For ܤ ൐ 1 steady wave conditions may be 

expected to hold with some confidence but for smaller values steady wave conditions are doubtful3. Our 

overdriven data shown in Figure 3 have ܤ mostly larger than one (Table 1, Ref. 22. For this calculation 

and all those that follow we assumed ܿ = 5.38 km s-1, and 1.34 = ݏ). For propagation distances of ~ 1.5 

µm, this corresponds to a minimum shock stress of ~ 30 GPa. Below this stress measured shock fronts 

will exhibit very large (up to ~ 10 GPa) elastic rises with fast rise times followed by slower plastic rises 

[Fig. 2(b)] (see also Refs. 16, 17, 29). On this basis we conclude that reported observations of plastic 

shocks with very small widths at anomalously low stresses13, were in reality observations of large 

amplitude elastic precursors (Figure 8 of Ref. 22. See also Ref. 16).         

It has been empirically observed that the strain rate of steady shocks in metals is related to the shock 

stress, ߪ, by a power law3,4 of the form ߟሶ ן ݉ ௠, and that furthermoreߪ ؆ 4. As noted earlier, this 

relationship has been verified experimentally only at relatively low strain rates due to the fact that the 

experimental time resolution has historically been limited. In Figure 4 we have plotted on a log-log scale 

measured peak30 shock stresses against measured strain rates for our overdriven shocks (upper panel). 

Also plotted is the lower strain rate data of Barker27 for 6061-T6 Al presented by Swegle and Grady3,28. 

Remarkably, we find that the linear relationship between log and log ߪ ሶߟ  is maintained over an 

enormous range of strain rates (105 s-1 to at least 1010 s-1) and that the inverse of the corresponding 

slope is very close to 4. This value may be compared to the theoretical estimates of 3.3 and 3.92 (Refs. 

19 and 18, respectively).   We note that our lowest stress datum (at ~ 25 GPa) is substantially below the 

straight line trend; however it is also true that the Bland number for this point was less than one (Table 
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1, Ref. 22).   This is consistent with the fact that the fourth-power law is expected to hold only for steady 

waves and is comparable to the behavior observed for shocks in vanadium31 that were shown to be 

nonsteady32,4.  

As pointed out by Grady4, the fourth-power relation was not the original expression that was proposed 

to be generally applicable. Instead, it had earlier been suggested that the product of the energy 

dissipated by the shock wave and the time over which this takes place is an invariant33. Whereas the 

fourth power law is only applicable to steady waves, the invariance applies generally to both steady and 

nonsteady waves4.  Furthermore, this product has units of specific energy time, or length2/time and is 

thus consistent with (specific) action in the context of classical mechanics4. We test the invariance (Fig. 

4, middle panel) by calculating the product ܣ ൌ ߝ ൈ ߝ where33,34 (Eq. 5 of Grady4) ,ݐ∆ ൌ ሾߩ3/ݏ଴ሺߩ଴ܿଶሻଶሿߪଷ (Eq. 3 of Grady4 to lowest order in σ/ߩ଴ܿଶ). For ∆ݐ we use our measured rise 

times. To compare with the data of Barker27,3 we use Eq. 4 of Grady4 to conveniently estimate rise times 

for those data, i.e. ∆ݐ ؆ ሶߟ଴ܿଶߩ/ߪ .  We find indeed that both sets of data are consistent and reasonably 

constant despite the very large range of strain rates and corresponding energies and rise times (lower 

panel of Fig. 4).  We note that on the linear ordinate scale of Fig. 4 (middle panel), our nonsteady point 

once again appears to be an outlier which may be consistent with an inapplicability of Eq. 3 of Grady4, 

which was derived for steady waves, directly to nonsteady data.  Finally, we consider the related 

dependence of the shock viscosity on strain rate as proposed by Grady4. Grady defines the viscosity as ߥ ൌ ଵସ  On the basis of the invariance of the dissipative action and the fourth .(Eq. 9 of Grady4) ݐ߂ߪݏ

power law we expect in turn that ߥ ן       .ሶିଵ/ଶ. Figure 9 of Ref. 22 confirms this resultߟ

In conclusion we have shown that fourth power scaling and invariance of the dissipative action hold 

even at ultra-high strain rates above the overdriven threshold in aluminum. Together with the 
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consistency of our strong shock data with the known  ݑ௣- ݑ௦ relation we also conclude that above ߪை, 

the dynamic behavior at early times in thin ( ~ 1 µm) Al films cannot be distinguished from that of much 

thicker (i. e. bulk) material.  
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Figure Legends 

Fig. 1. (color online). (a) Experimental configuration used for launching and probing shock waves in pure 

aluminum films deposited onto glass.  Part of the chirped, clipped pump pulse (~270 ps duration, 

centered on 800 nm, spot diameter ~20 μm, rise ~ 12 ps) is absorbed by the aluminum and consequent 

plasma expansion drives a shock towards the free Al surface. The time history of the motion of the free 

surface, (up to ~250 ps) is obtained in one shot by interfering two probe pulses (~270 ps, 800 nm, ~200 

μm, separated in time by 10 ps, pulse durations not to scale) in a grating spectrometer15.  A moving time 

average of 10 ps is applied to the data22. Measurements are made separately at the free surface of the 

two steps (Positions 1 and 2). Thicknesses ݄ଵand ݄ଶ are respectively ~ 0.72 μm and ~ 1.44 μm (not to 

scale with focal diameters).  

Fig. 2.  (color online). Free surface velocity histories measured at Positions 1 and 2 of Fig. 1 for 

decreasing pump pulse energies. The black (red) line is the numerical average of three separate shots at 

Position 1 (2); the thin gray lines are an example of one of the individual shots. The origin on the time 

axis is arbitrary.  Shock rises in (a) imply a single wave structure; (b) a two wave structure containing a 

highly unrelaxed elastic precursor in addition to the plastic rise. Time histories correspond to shocks well 

above the overdriven limit (a), and below it (b).  The average amplitude of the shock in (a) is ~ 40 GPa 

(Table 1 of Ref. 22); the average amplitude of the elastic precursor in (b) is ~ 9.2 GPa, (Table 2 of Ref. 

22).       

Fig. 3. (color online) Measured plastic shock widths compared to literature values. Red squares: widths 

corresponding to the present data having rises of the form shown in Fig. 2(a). Gray triangles: rough 

estimations for nonsteady shocks. Uncertainties are standard deviations for nominally fixed pump 

energies (hence no uncertainties quoted for single traces). Diamonds: calculated values for the data of 
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Ref. 3 that were obtained from Ref 27 for 6061-T6 Al.   Open and solid circles: theoretical results for 

6061-T6 Al of Ref. 18 with different model parameters. The black line is a fit to the solid circles and red 

squares only in order to permit interpolation: log ݓ ൌ 4.1݁ିఙ/ଽ.଼ ൅ 6.7݁ିఙ/଴.ଽ଻ െ 0.8, with width in 

micrometers and peak stress in GPa (See Ref. 22 for further details).   

Fig. 4.  (color online). Dissipative action, ܣ (triangles), rise time ∆ݐ (diamonds), dissipated specific energy ߝ (stars), and peak stress ߪ (squares), plotted against strain rate, ߟሶ . Red symbols: present data. Black 

symbols: strain rate data of Ref. 3 that were obtained from Ref. 27 and our corresponding calculated 

values for ݐ∆ ,ܣ and ߝ. Straight line fits to ∆ߝ ,ݐ, and ߪ yield: log ݐ∆ ൌ െ2.7 െ 0.78 log ሶߟ , log ߝ ൌ െ7.5 ൅0.76 log ሶߟ , and log ߪ ൌ െ0.99 ൅ 0.25 log ሶߟ , respectively, with ∆ݐ in s, ߝ in MJ kg-1, ߪ in GPa and ߟሶ  in s-1.  

The dashed line in the top panel is the average of all values of ܣ except the lowest stress point of the 

present data (open triangle) and is equal to ~ 4.3 x 10-5 m2 s-1.                     
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Figure 1.  

 

Figure 2(a). 
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Figure 2(b). 

 

 

Figure 3. 
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Figure 4. 

 

 


