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We show that three group IIIB divalent ions, B+, Al+, and In+, have anomalously small blackbody
radiation (BBR) shifts of the ns2 1S0 − nsnp 3Po

0 clock transitions. The fractional BBR shifts
for these ions are at least 10 times smaller than those of any other present or proposed optical
frequency standards at the same temperature, and are less than 0.3% of the Sr clock shift. We
have developed a hybrid configuration interaction + coupled-cluster method that provides accurate
treatment of correlation corrections in such ions, considers all relevant states in the same systematic
way, and yields a rigorous upper bound on the uncertainty of the final results. We reduce the BBR
contribution to the fractional frequency uncertainty of the Al+ clock to 4 × 10−19 at T=300 K.
We also reduce the uncertainties due to this effect at room temperature to 10−18 level for B+ and
In+ to facilitate further development of these systems for metrology and quantum sensing. These
uncertainties approach recent estimates of the feasible precision of currently proposed optical atomic
clocks.

PACS numbers: 06.30.Ft, 31.15.ap, 31.15.ac, 31.15.am

Development of more precise frequency standards will
open ways to more sensitive quantum-based standards
for applications such as measurements of the fundamen-
tal constants and testing of physics postulates, inertial
navigation, magnetometry, and tracking of deep-space
probes [1]. Recent advances in atomic and optical physics
have led to unprecedented improvements in the accuracy
of optical frequency standards, which could lead to re-
definition of a second [2]. For example, in 2010, the
most accurate clock to date was demonstrated, an optical
clock based on quantum logic spectroscopy of an Al+ ion
[3]. Its fractional frequency uncertainty of 8.6× 10−18 is
equivalent to a shift of 1 second in 3.7 billion years.

The definition of the second refers to a clock transi-
tion in an atom at a temperature of absolute zero [2],
whereas all present optical atomic clocks operate at room
temperature (with the exception of Hg+ [4]). Thus, the
transition of a working optical clock must be corrected
for the effect of finite temperature, to which the lead-
ing contributor is the blackbody radiation (BBR) shift
of the transition frequency. In fact, the three largest
systematic uncertainties in the Al+ clock frequency are
due to excess micromotion of the trapped ion, its secu-
lar motion, and the BBR shift [3]. The corresponding
fractional frequency uncertainties associated with these
three effects were evaluated [3] to be 6×10−18, 5×10−18,
and 3×10−18. If the motional effects could be sufficiently
suppressed by experimental techniques, the BBR shift,
which is, in principle, calculable, will become the main
source of uncertainty.

Experimental measurements of the BBR shifts are suf-

ficiently difficult that no direct measurement has yet been
reported for optical frequency standards, and even the
measurement of differential Stark shifts has only been
carried out with uncertainties greater than 10%. While
BBR shifts can be strongly suppressed by lowering the
temperature, it is desirable to attain the highest accu-
racy that is possible without using cryogenic techniques.
In this work, we have calculated the BBR shifts in Al+,
B+ , and In+ frequency standards with 10% accuracy,
which removes the BBR shift as a significant source of un-
certainty in the present experiments. Our present work
calculates the BBR shift uncertainty at constant temper-
ature (300 K). Imperfect temperature control is a source
of additional experimental uncertainty. Small BBR shifts
are also favorable because they translate to small uncer-
tainties due to imperfect temperature control.

The BBR frequency shift of a clock transition can be
related to the difference of the static electric-dipole po-
larizabilities between the two clock states [5]. It happens
that polarizabilities of the two Al+ clock states are nearly
equal (within 2%). This is a source of difficulty in the
calculation and the determination of its uncertainty. Due
to this cancellation, the BBR shift in Al+ frequency stan-
dard [3] is at least an order of magnitude smaller than
that estimated for any other atomic frequency standard
to date [6–9]. Precise knowledge of the BBR shift and its
uncertainty is essential for further improvement of the ac-
curacy of the Al+ optical frequency standard. Here we re-
port the development of a new method of first-principles
calculation that reduces the relative uncertainty due to
the BBR shift at 300K in Al+ to 4× 10−19.



2

In this work, we have also investigated other divalent
group IIIB ions, B+ and In+, which have been suggested
as potential optical frequency standards [10–13]. No pub-
lished values of their BBR shifts exist at the present time
to the best of our knowledge. We find that B+ and In+

have unusually small BBR shifts due to the same type of
cancellation that we find in Al+. Al+ remains the species
with the smallest BBR shift yet investigated, but In+ and
B+ are superior in terms of the BBR shift to any other
present frequency standards.

Unless stated otherwise, we use atomic units (a.u.) for
all matrix elements and polarizabilities throughout this
paper: the numerical values of the elementary charge,
e, the reduced Planck constant, ~ = h/2π, and the
electron mass, me, are set equal to 1. The atomic
unit for polarizability can be converted to SI units via
α/h [Hz/(V/m)2]=2.48832×10−8α (a.u.). The conver-
sion coefficient is 4πǫ0a

3
0/h in SI units and the Planck

constant h is factored out in order to provide direct con-
version into frequency units; a0 is the Bohr radius and ǫ0
is the electric constant.

The BBR frequency shift of the clock transition can
be related to the difference of the static electric-dipole
polarizabilities between the clock states, ∆α0, by [5]

δν = −
1

2
(831.9 V/m)2

(

T (K)

300

)4

∆α0(1 + η), (1)

where η is a small dynamic correction due to the fre-
quency distribution and only the electric-dipole transi-
tion part of the contribution is considered. In this equa-
tion, ∆α0 in atomic units has to be multiplied by the
numerical factor from the previous paragraph.

Precision calculations for divalent atoms require an
accurate treatment of the strong valence-valence corre-
lations; low-order perturbation theory does not give re-
sults of competitive accuracy for neutral atoms or singly-
charged ions. As a solution to this problem, we developed
an ab initio theoretical method within the framework of
relativistic many-body theory to accurately treat corre-
lation corrections in divalent atoms [14]. This method
combines the all-order approach currently used in preci-
sion calculations of properties of monovalent atoms [15]
with the configuration-interaction (CI) approach that is
applicable for many-electron systems. Here we report the
extension of this method to calculate ground and excited
state polarizabilities of divalent ions.

In the combined CI + all-order approach used in the
present work, core excitations are incorporated in the
CI method by constructing an effective Hamiltonian us-
ing fully converged all-order excitation coefficients [14].
Therefore, the core-core and core-valence sectors of the
correlation corrections for divalent systems are treated
with the same accuracy as in the all-order approach for
monovalent atoms. Then, the CI method is used to treat
valence-valence correlations. For divalent systems, only

TABLE I: Comparison of calculated and experimental ener-
gies of Al+ in cm−1. Column 1: level designation. Column
2: experimental energies. The entry for the ground state 3s2

is its two-electron binding energy; all excited state entries
are energies measured from the ground state. Columns 3-
5: differences of experimental from theoretical values in CI,
CI+MBPT, and CI+all-order approximations. For example,
the CI 3s2 energy is 381308 − 4718 = 376591 cm−1.

Level Expt. CI CI+MBPT CI+All

3s2 1S0 381308 4718 163 23
3p2 1D2 85481 1984 61 -19
3s4s 3S1 91275 1290 62 14
3p2 3P0 94085 1499 34 7
3p2 3P1 94147 1499 30 4
3p2 3P2 94269 1498 23 -4
3s4s 1S0 95351 1359 50 3
3s3d 3D3 95549 1353 -2 -25
3s3d 3D2 95551 1354 -2 -24
3s3d 3D1 95551 1354 -1 -24

3s3p 3Po

0 37393 1155 56 3
3s3p 3Po

1 37454 1154 52 3
3s3p 3Po

2 37578 1153 45 -6
3s3p 1Po

1 59852 255 -105 -84

two-particle configuration space needs to be considered,
so the configuration space can be made numerically com-
plete. The valence part of the polarizability is determined
by solving the inhomogeneous equation of perturbation
theory in the valence space, which is approximated as

(Ev −Heff)|Ψ(v,M ′)〉 = Deff,q|Ψ0(v, J,M)〉 (2)

for a state v with the total angular momentum J and
projection M [16]. The wave function Ψ(v,M ′), where
M ′ = M + q, is composed of parts that have angular
momenta of J ′ = J, J ± 1 from which the scalar and
tensor polarizability of the state |v, J,M〉 can be deter-
mined [16]. The construction of the effective Hamilto-
nianHeff using the all-order approach is described in [14].
The effective dipole operator Deff includes random phase
approximation (RPA) corrections. The calculations are
carried out with a finite B-spline basis set [17], with sev-
eral lower orbitals replaced by exact Dirac-Hartree-Fock
(DHF) functions.
In order to establish the accuracy of our approach, we

also perform the CI and CI+MBPT calculations carried
out with the same parameters (configuration space, ba-
sis set, number of partial waves, etc.). No core exci-
tations are added in the pure divalent CI approach. In
the CI+MBPTmethod, core excitations are incorporated
by constructing an effective Hamiltonian using second-
order many-body perturbation theory [18]. Comparison
of the CI, CI+MBPT, and CI+all-order values allows us
to evaluate the importance of the various correlation cor-
rections, therefore establishing the upper bound on the
uncertainty of our calculations.
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TABLE II: Contributions to the 3s2 1S0 and 3s3p 3Po

0 po-
larizabilities α0 of Al+ in a.u. Absolute values of the corre-
sponding reduced electric-dipole matrix elements are listed in
column labeled “D” in a.u. Contributions labeled “Other”,
“Core”, and “VC” are described in the text. Final polariz-
ability values are listed in rows labeled “Total”.

State Contr. D α0

3s2 1S0 3s2 1S0 − 3s3p 1Po

1 3.113 23.661
3s2 1S0 − 3s4p 1Po

1 0.045 0.003
Other 0.138
Core 0.265
VC -0.019
Total 24.048

3s3p 3Po

0 3s3p 3Po

0 − 3s4s 3S1 0.900 2.197
3s3p 3Po

0 − 3p2 3P0 1.836 8.687
3s3p 3Po

0 − 3s3d 3D1 2.236 12.568
Other 0.836
Core 0.265
VC -0.010
Total 24.543

Table I presents the comparison of the experimental
energies of Al+ levels with those calculated in the CI,
CI+MBPT, and CI+all-order approximations. The sup-
plementary material contains the analogous data for B+

and In+ [19]. Significant improvement of the energy
values is observed for Al+ and In+ with the CI+all-order
method as expected due to the more complete inclusion of
the correlation corrections than in the CI and CI+MBPT
approaches. For most levels, the CI+all-order energies
are within a few cm−1 of the experimental values for
B+ and Al+. The accuracy of the In+ energy levels is
sufficient for the purposes of the present work: replacing
our theoretical energies by the experimental values in the
dominant polarizability contributions changes the BBR
shift by only 1% .

The breakdown of the contributions to the 3s2 1S0 and
3s3p 3Po

0 polarizabilities α of Al+ is given in Table II.
The supplementary material contains the analogous data
for B+ and In+ [19]. While we do not use the sum-over-
state approach in the calculations of the polarizabilities,
it is useful to establish which terms give the dominant
contributions. We evaluate several dominant contribu-
tions to polarizabilities by combining our values of the
E1 matrix elements and energies as 2D2/3∆E accord-
ing to the sum-over-states formula [20] with J = 0. We
find that a single transition, ns2 1S0 − nsnp 1Po

1, con-
tributes 92.9%, 99.4%, and 98.7% to the valence ground
state polarizability for B+, Al+, and In+, respectively.
Three transitions, nsnp 3Po

0−np2 3P1, nsnp
3P0−ns(n+

1)s 3S1, and nsnp 3Po

0−ns(n+1)d 3D1 contribute 70.8%,
98.7%, and 92.8% to the 3Po

0 polarizability for B+, Al+,
and In+, respectively. Therefore, both Al+ and In+ po-
larizabilities could be calculated more precisely if exper-
imental values of the dipole matrix elements were known

TABLE III: The values of the ns2 1S0 and nsnp 3Po

0 polariz-
abilities α0 in B+, Al+, and In+ calculated in CI, CI+MBPT,
and CI+all-order approximations in a.u. CI+all-order values
are taken as final.

Ion CI CI+MBPT CI+all
B+ α0(2s

2 1S0) 9.575 9.613 9.624
α0(2s2p

3Po

0) 7.779 7.769 7.772
∆α0 -1.796 -1.844 -1.851

Al+ α0(3s
2 1S0) 24.405 24.030 24.048

α0(3s3p
3Po

0) 24.874 24.523 24.543
∆α0 0.469 0.493 0.495

In+ α0(5s
2 1S0) 26.27 23.83 24.01

α0(5s5p
3Po

0) 28.60 25.87 26.02
∆α0 2.33 2.04 2.01

to high precision. We subtract the values of the terms
listed separately in Table II from our total valence po-
larizability values to obtain the remaining contributions
that are listed in the rows labeled “Other”. Our dom-
inant contributions for Al+ are in excellent agreement
with CI calculations with a semi-empirical core potential
(CICP) [8].

The ionic core polarizability and VC term that corrects
it for the presence of the valence electrons are listed in
rows labeled “Core” and “VC”. We note that the ionic
core contribution is the same for both clock states and
so it does not contribute to the BBR shift. On the other
hand, the VC contribution is different for the two clock
states. It is negligible for B+. It is the largest for the 3Po

0

polarizability of In+ to which it contributes only 0.5%.
However, its contribution to the BBR shift is much larger,
1.8% and 5% in Al+ and In+, respectively, owing to the
large degree of cancellation between 1S0 and 3Po

0 polar-
izabilities. We estimate the dominant uncertainty in this
term as the difference of the DHF and RPA values, and
assume that all other uncertainties do not exceed this
dominant uncertainty. Adding these two uncertainties in
quadrature, we estimate that VC term leads to the 0.6%
and 2% uncertainties in the BBR shifts for Al+ and In+.

There are three other major sources of uncertainties
in our calculations of the BBR shift. One is the omis-
sion of the Breit interaction in our calculations. We have
estimated the main part of the Breit correction by incor-
porating the one-body part of the Breit interaction into
the basis set orbitals on the same footing with Coulomb
interaction. All calculations were then repeated with the
modified basis set. The change in the Al+ BBR shift was
found to be only 1.4%. The two other main sources of
uncertainty are incompleteness of treatment of core exci-
tations via the effective Hamiltonian technique described
above (for example, our all-order method is restricted to
single and double excitations), and limiting the treatment
of the effective dipole operator Deff to the RPA method
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TABLE IV: BBR shifts at T = 300K in B+, Al+, and In+. ∆α0 is given in a.u.; clock frequencies ν0 and the BBR shifts
∆νBBR are given in Hz. Uncertainties in the values of ∆νBBR/ν0 are given in column labeled “Uncertainty”.

Ion ∆α0 η(1S0) η(3P0) ∆νBBR (Hz) ν0 (Hz) |∆νBBR/ν0| Uncertainty
B+ -1.851 0.00014 0.00014 0.0159(16) 1.119 × 1015 1.42× 10−17 1× 10−18

Al+ 0.495 0.00022 0.00024 -0.00426(43) 1.121 × 1015 3.8× 10−18 4× 10−19

In+ 2.01 0.00018 0.00019 -0.0173(17) 1.267 × 1015 1.36× 10−17 1× 10−18

[16]. The second issue is unlikely to cause large errors
as RPA is expected to be the dominant contribution for
these E1 matrix elements. Moreover, we have verified
that our ab initio CI+all-order method reproduces the
recommended values [5] of clock state polarizabilities of
Mg, Ca, and Sr [21]. We investigate the uncertainty due
to the inclusion of the core excitations by comparing the
difference ∆α0 calculated in the CI, CI+MBPT, CI+all-
order approximations. These results are summarized in
Table III. We find that the entire contribution of core ex-
citations to the BBR shift, estimated as the difference of
the ∆α0 CI+all-order and CI values is only 3%, 5%, and
16% for B+, Al+, and In+, respectively. The difference
between CI+MBPT and CI+all-order values is 0.4% for
B+ and Al+, and 1.7% for In+. Therefore, we place an
upper bound on the uncertainty of our BBR values at
10% for all three cases.

Our final results are summarized in Table IV, where
we list the polarizability difference ∆α0, dynamic cor-
rections η, BBR shift at T = 300 K, 1S0−

3Po

0 clock
frequencies ν0, relative BBR shift ∆νBBR/ν0, and the
uncertainty in the relative BBR shift for B+, Al+, and
In+. Dynamic corrections are very small for both states
and nearly cancel each other. Their contributions to the
BBR shift are negligible for all three ions. We estimated
that contribution to the BBR shift due to the 3Po

0−
3Po

1

M1 transition is below 10−5 Hz and is negligible at the
present level of accuracy.

Our BBR shift value in Al+, ∆νBBR =
−0.00426(43) Hz, is in agreement with CICP value
of Ref. [8] ∆νBBR = −0.0042(32) and is consistent with
experimental measurement ∆νBBR = −0.008(3) Hz from
Ref. [7]. The values of η for Al+ are in agreement with
[8].

Our value for the Al+ BBR shift is in agreement
with that of the coupled-cluster calculation ∆νBBR =
−0.0041(7) Hz [9]. Although the uncertainty in that cal-
culation was estimated at 17%, the individual state po-
larizabilities, and more significantly, their difference ∆α0,
varied considerably with choice of basis set. Specifically,
the single-double coupled cluster (CCSD) values of ∆α0

with increasing basis sets are reported to be 0.165, 0.058,
0.897, 0.427, and 0.406 (in a.u.). Although the last two
numbers are close, this sequence in itself does not demon-
strate convergence (twice the difference in the last two
values was taken to be the basis set error). Heavy depen-
dence of the polarizability on the choice of basis set is a

well-known problem in coupled-cluster methods (see [20]
and references therein). This issue was exacerbated in [9]
by use of different methods for the lower and upper clock
states. In our work, on the other hand, large basis sets
were used in all all-order/pertubation theory calculations
(385 orbitals with l < 6), and the CI space was saturated
until the error was negligible at the present level of ac-
curacy. The same approach and basis sets were used in
all our calculations. In addition to the polarizabilities,
the only other numerical result reported in Ref. [9] is
the 3s2 − 3s3p 3Po

0 clock transition energy. Its reported
value of 37326(95) cm−1 differs from the experimental
value 37393 cm−1 by 67 cm−1. Our CI+all-order value
37390 cm−1 agrees with experiment to 3 cm−1, and even
our CI+MBPT value agrees to 56 cm−1 (see line 3s3p 3Po

0

in Table I). Most of our other energy levels also agree
with experiment to a few cm−1.

We also calculated frequency-dependent polarizabili-
ties of clock states at 1126 nm using the same approach;
our values are α0(ω)[

1S0] = 24.58 a.u. and α0(ω)[
3P0] =

25.13 a.u. The resulting frequency-dependent polariz-
ability difference ∆α0(ω) = 0.549(55) a.u is in agreement
with theoretical CICP value 0.54(41) a.u. [8] and is 1.6σ
from the experimental value 1.08(34)a.u. [7].

In summary, our calculations of the BBR shifts reduce
the uncertainties in the fractional frequency shift at room
temperature to 10−18 in B+ and In+ and to 4 × 10−19

in Al+. These uncertainties approach recent estimates of
the feasible precision of currently proposed optical atomic
clocks [4]. This work introduces a novel computational
approach that can be used for a variety of problems of
importance to atomic, nuclear, and high-energy physics,
as well as quantum chemistry (study of parity violation,
searches for electron dipole moment, study of degener-
ate gases, determination of nuclear magnetic moments,
search for variation of fundamental constants, etc.)
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