This is the accepted manuscript made available via CHORUS. The article has been published as:

Cold Nuclear Matter Effects on J/ψ Yields as a Function of Rapidity and Nuclear Geometry in d+A Collisions at √s_{NN}=200 GeV
A. Adare et al. (PHENIX Collaboration)
Phys. Rev. Lett. 107, 142301 — Published 27 September 2011
DOI: 10.1103/PhysRevLett.107.142301
Cold Nuclear Matter Effects on J/ψ Yields as a Function of Rapidity and Nuclear Geometry in d+A Collisions at $\sqrt{s_{NN}}=200$ GeV

The measured yields of quarkonium states in $p+A$ (or $d+A$) collisions provide information about the time scale and dynamics for the creation of a $c\bar{c}$ pair and its evolution to a color-singlet quarkonium state. The propagation time of the $c\bar{c}$ pair through the nucleus is set by the incident energy of the proton (or deuteron) in the rest frame of the nucleus and by the relative longitudinal momentum of the $c\bar{c}$ pair. Fixed target $p+A$ experiments at Fermilab [1] showed that the J/ψ and ψ' mesons suffer a similar (and substantial) suppression at forward rapidity, suggesting that the suppression must occur at the prehadronic stage. An analysis [2] of results for $\sqrt{s_{NN}} = 17-42$ GeV highlighted the importance of (initial state) nuclear modifications to the parton distribution functions (nPDFs) and of (final state) break up of the $c\bar{c}$ precursor with a break-up cross section (σ_{bc}) that decreases as the relative center-of-mass energy between the $c\bar{c}$ and the nucleon increases. It is essential to extend this kind of study to the higher energies provided by the Relativistic Heavy Ion Collider (RHIC).

At RHIC, quarkonium states are predominantly produced via gluon-gluon interactions, and thus the yields in $d+Au$ collisions at forward rapidity, the deuteron-going direction, are sensitive to the low-x region of the gluon densities in the gold nucleus (x being the fractional momentum carried by the gluon), where shadowing [3, 4] and saturation effects [5] are expected. Additionally, the observation of quarkonium suppression in relativistic heavy ion collisions [6, 7] is expected to provide a measure of the color screening length in the quark gluon plasma [8]. However, this suppression of quarkonia must be separated from the aforementioned cold nuclear matter effects. Thus, precise measurements of quarkonia suppression in $d+Au$ are needed.

The PHENIX experiment has previously published J/ψ results in $d+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV [9] from data taken in 2003. In this paper we present results from $d+Au$ collision data taken in 2008, representing an increase in yield by a factor of 30–50 over the previous results and a reduction in the systematic uncertainties by up to a factor of two. Additionally, the $p+p$ reference data sets are updated to include larger data samples from 2006 and 2008.

The PHENIX apparatus is described in detail in [10]. It comprises two sets of spectrometers referred to as the central arms, which measure single particles emitted in the pseudorapidity region $|\eta| < 0.35$, and the muon arms, measuring single muons in the pseudorapidity range $1.2 < |\eta| < 2.4$. J/ψ particles are measured via their dielectron (dimuon) decays at mid (backward and forward) rapidities, as described in detail in [9, 11]. The $d+Au$ data used for
this analysis were recorded using selective Level-1 triggers in coincidence with a minimum bias interaction requirement of one hit in each of two beam-beam counters (BBCs) located on each side of the interaction point (3 < |η| < 3.9). This minimum bias selection covers 88 ± 4% of the total d+Au inelastic cross section of 2260 mb [12]. Additional Level-1 triggers independently require (1) one hit above threshold (600 or 800 MeV) in the Electromagnetic Calorimeter with a matching hit in the Ring Imaging Čerenkov Detector identified as an electron or (2) two tracks identified as muon candidates [9]. The data sets sampled via the Level-1 triggers represent analyzed integrated luminosities of 62.7 nb−1 (electrons) and 55.2 nb−1 (muons). For the midrapidity dielectrons we use p + p reference data from [13]. For the forward and backward rapidity dimuons, we report here new p + p data from 2006 and 2008 with a total integrated luminosity of 5.1 pb−1.

The p_T-integrated J/ψ invariant yield as a function of rapidity is calculated for both $p+p$ and $d+Au$ collisions via:

$$B_H \frac{dN}{dy} = \frac{\epsilon N_{J/\psi}}{N_{MB} A \Delta y}$$

(1)

where B_H is the branching fraction for $J/\psi \rightarrow e^+e^-$ or $\mu^+\mu^−$, $N_{J/\psi}$ is the number of J/ψ counts, N_{MB} is the number of sampled minimum bias (MB) events, Δy is the width of the rapidity bin and ϵA represents the product of the efficiency and acceptance, including the Level-1 trigger efficiency. We also include a correction factor (C) to account for trigger and (in $d+Au$) centrality bias in J/ψ events. For $p+p$ ($d+Au$) collisions, the correction factor is $C = 0.69$ (0.89 - 1.03). The corrected J/ψ invariant yield integrated over all centralities (0-100%) corresponds to the $d+Au$ inelastic event class.

The number of J/ψ particles is determined using the invariant mass distribution of unlike-sign lepton pairs. Approximately 38000, 8900, and 42000 J/ψ counts are measured at backward, mid, and forward rapidity, respectively. Figure 1a shows the J/ψ invariant yield in $p+p$ and $d+Au$ collisions, integrating over centrality (0-100%). The error bars (boxes) represent point-to-point uncorrelated (correlated) uncertainties. The global scale uncertainties are indicated. The dominant systematic uncertainty is from the efficiency and acceptance corrections and is determined from detailed simulation and real detector performance comparisons.

We quantify the cold nuclear matter effects by calculating the nuclear modification factor R_{dAu},

$$R_{dAu}(i) = \frac{\frac{dN^{d+Au}(i)}{dy}}{\langle N_{coll}(i) \rangle \frac{dN^{pp}(i)}{dy}}$$

(2)

where i refers to the centrality bin (e.g., 0-20%) and $\langle N_{coll}(i) \rangle$ is the corresponding number of nucleon-nucleon collisions, determined from the total energy deposited in the BBC located at negative rapidity. For a given centrality bin $\langle N_{coll}(i) \rangle$ is derived using a Glauber calculation coupled to a simulation of the BBC response, with Woods-Saxon density distributions and a pp inelastic cross section of 42 mb (see [9] for details).

The centrality bins used in this analysis are characterized as follows: central $\langle N_{coll}(0–20%) \rangle = 15.1 \pm 1.0$, $\langle N_{coll}(20–40%) \rangle = 10.2 \pm 0.7$, $\langle N_{coll}(40–60%) \rangle = 6.5 \pm 0.4$, $\langle N_{coll}(60–88%) \rangle = 3.2 \pm 0.2$ and $\langle N_{coll}(0–100%) \rangle = 7.6 \pm 0.4$. Figure 1b shows R_{dAu} corresponding to $d+Au$ collisions integrated over all centralities. Figure 2 shows R_{dAu} for $d+Au$ centralities of 60–88% (a) and 0–20% (b).

For peripheral collisions, the R_{dAu} ratio shows a mild suppression, roughly independent of rapidity, within the systematic uncertainties of approximately ±15%. For central collisions R_{dAu} indicates a much larger suppression for J/ψ at forward rapidity.

We also calculate the ratio R_{CP}, which gives the nuclear modification between central and peripheral $d+Au$ collisions:

$$R_{CP} = \frac{\frac{dN^{d+Au}(0–20%)}{dy}/\langle N_{coll}(0–20%) \rangle}{\frac{dN^{d+Au}(60–88%)}{dy}/\langle N_{coll}(60–88%) \rangle}$$

(3)

This variable, shown in Fig. 2c as a function of rapidity, has a much higher accuracy because many of the systematic uncertainties cancel in the ratio. One observes a significant suppression of forward rapidity J/ψ yields in central $d+Au$ events, while at backward rapidity there is almost no modification.

Following the prescription in [14], we utilize the EPS09 nPDF set [15] and an example $\sigma_{br} = 4$ mb chosen to match the backward rapidity R_{dAu} data. We also show as red dashed lines the differences within the EPS09 nPDFs for the single parameter change that gives the largest variation [15]. While the calculation reproduces reasonably well the 0-100% integrated R_{dAu} data, as shown in Fig. 1b, it fails to describe the R_{CP} measurement at forward rapidity (Fig. 2c). No parameter choice of the EPS09 nPDF set and of σ_{br} is able to describe the rapidity and centrality.
dependence of the data (see [16] for more details). Thus, there is no single σ_{br} value to be quoted (as also seen at lower energies [2]).

A second class of calculations incorporates gluon saturation effects at small-x [5, 17], and is compared with experimental data in Figs. 1–2. A modest J/ψ enhancement is predicted at midrapidity due to double-gluon exchange processes (not seen in the data) and a substantial J/ψ suppression at forward rapidity and in more central $d+Au$ events due to saturation effects (in agreement with the data). However, a similar suppression of forward rapidity J/ψ observed at lower $\sqrt{s_{NN}}$ [1, 18] presents a challenge to this saturation interpretation.

In order to further explore the centrality dependence of the nuclear effects we categorize each $d+Au$ centrality class in terms of the distribution of transverse radial positions (r_T) of the nucleon-nucleon collisions relative to the center of the gold nucleus. The r_T distributions for the four centrality categories are shown in Fig. 3a. We expect that the nuclear effects are dependent on the density weighted longitudinal thickness through the gold nucleus ($\Lambda(r_T) \equiv \frac{1}{\rho_0} \int dz \rho(z, r_T)$), where ρ_0 is the density in the center of the nucleus. This quantity is also shown in Fig. 3a as a function of r_T.

Following the work in [16], we posit three different functional dependencies of the nuclear modification on $\Lambda(r_T)$.

\begin{align*}
\text{Exponential} & : M(r_T) = e^{-a\Lambda(r_T)} \\
\text{Linear} & : M(r_T) = 1.0 - a\Lambda(r_T) \\
\text{Quadratic} & : M(r_T) = 1.0 - a\Lambda(r_T)^2,
\end{align*}

where a is a parameter depending on the average modification level. The EPS09 nPDF based calculation, shown
FIG. 2: (color online) Nuclear suppression factors $R_{d\text{Au}}$-peripheral (a), $R_{d\text{Au}}$-central (b), and R_{CP} (c) as a function of rapidity.

in Figs. 1 and 2, assumes the linear relation [14, 19] in Eq. 5 in order to make centrality-dependent predictions. In contrast, contributions from a break up of the $c\bar{c}$ via a σ_{br} follow the exponential relation in Eq. 4.

Using the $\Lambda(r_T)$ dependence and the r_T distributions for each centrality bin shown in Fig. 3a, one can calculate the nuclear modification $R_{d\text{Au}}$ in each centrality bin that results from (Eqs. 4–6) for any given value of a. This allows one to plot the R_{CP} in the most central bin versus the average modification $R_{d\text{Au}}$ (0-100%) for each of the three geometric dependencies, as shown in Figure 3b. Varying the parameter a results in a unique locus of points on which any suppression with a given geometric dependence must lie.

The experimental data is also plotted in Fig. 3b for the same quantities. The ellipses represent a one standard deviation contour for the systematic uncertainties, which are largely uncorrelated between the $R_{d\text{Au}}$ and R_{CP}. There is a substantial deviation between the exponential and linear cases and the experimental data at forward rapidity, while at mid and backward rapidities the data cannot discriminate between the cases. The forward rapidity data suggest that the dependence on $\Lambda(r_T)$ is nonlinear and closer to quadratic. If the dominant mechanism leading to the modification is different at different rapidities, it is possible for example that the modification at backward rapidities is linear while at forward rapidities is not. This is reinforced by the EPS09 plus σ_{br} calculation, where regardless of the variation of the nPDF or σ_{br} one cannot simultaneously describe the full centrality dependence of the data, as seen in Fig. 2.

Other nonlinear density effects (e.g., quadratic) for the geometric dependence [20] and for break up of the $c\bar{c}$ after production [21, 22] have been proposed. An alternative explanation is that initial-state parton energy loss results in a backward shift of the J/ψ rapidity distribution [23]. It has been observed [24] that the nuclear modification as a function of center-of-mass rapidity is similar to that observed at lower energies [1] with a steep increase in suppression at forward rapidities.

In summary, we have presented precision data on J/ψ yields in $d+Au$ and $p+p$ collisions at $\sqrt{s_{NN}} = 200$ GeV over a broad range in rapidity and $d+Au$ centrality. Nuclear modification factors at forward rapidity as a function of centrality cannot be reconciled with a picture of cold nuclear matter effects (nPDFs and a σ_{br}) when an exponential
FIG. 3: (color online) (a) Normalized to unity at the maximum bin are (solid curves) transverse radial r_T distributions in the gold nucleus for four $d+Au$ centrality selections and (dashed curve) density weighted longitudinal thickness as a function of r_T ($\Lambda(r_T)$). (b) R_{CP} versus R_{dAu} for the experimental data (points) and constraint lines for three geometric dependencies of the nuclear modification (curves).

or linear dependence on the nuclear thickness is employed. Effects of gluon saturation may play an important role in understanding the forward rapidity modifications, though other explanations involving initial-state parton energy loss need further investigation.

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We also thank Ramona Vogt and Kirill Tuchin for useful discussions and theoretical calculations. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (P. R. China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Ministry of Industry, Science and Technologie, Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Ger-
many), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and the Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the US-Hungarian Fulbright Foundation for Educational Exchange, and the US-Israel Binational Science Foundation.

∗ Deceased
† PHENIX Spokesperson: jacak@skipper.physics.sunysb.edu