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We present the first calculation on the ∆ axial-vector and pseudoscalar form factors using lat-
tice QCD. Two Goldberger-Treiman relations are derived and examined. A combined chiral fit is
performed to the nucleon axial charge, N to ∆ axial transition coupling constant and ∆ axial charge.

Introduction. Numerical solution of Quantum Chro-
modynamics (QCD), the underlying theory of the strong
interactions, has proved a very successful approach in
providing a theoretical understanding of baryon struc-
ture. During the last few years, simulations of the dis-
cretized theory known as lattice QCD have included dy-
namical quarks with near to physical mass values [1]. A
success of these recent simulations is the calculation of
the low-lying hadron spectrum [2–4] showing agreement
with the experimental values. The lattice set-up can also
be applied to compute quantities that are not known ex-
perimentally. In this work we report the first calculation
of the ∆ axial-vector and pseudoscalar form factors.

Understanding the structure of the ∆ resonance has
great relevance to nuclear phenomenology. The ∆ is a
rather broad resonance close to the πN threshold. It
therefore couples strongly to nucleons and pions mak-
ing it an important ingredient in chiral expansions [5–8].
The ∆ baryon resists experimental probing due to its
short lifetime (∼ 10−23 s) [9, 10]. Its axial charge and
π-∆ coupling constants that are needed as input in chiral
Lagrangians are difficult to measure. Baryon chiral ex-
pansion calculations that include the ∆ explicitly follow
one of two strategies as far as the determination of these
parameters is concerned. The first is to relegate the ax-
ial charge to one of many fit parameters, and fit using
lattice [5, 11], experimental [8], or partial-wave calcula-
tion data [7]. The second is to use estimates based on
phenomenology such as the relation between the nucleon
axial charge gA that is well measured and the ∆ axial
charge, which can be derived from the large-Nc limit [12]
or SU(4) symmetry [13]. The Goldberger-Treiman (GT)
relation is then used to get the effective π∆∆ coupling.

Quite recently, groups have calculated ∆ axial charge
through QCD sum rules [14] and χPT [15], and both have
noted the lack of an explicit lattice calculation of this

quantity. First-principles lattice QCD calculations can
probe the structure of the ∆ and indeed recent studies
have produced calculations of the πN∆ coupling [16, 17]
and the electromagnetic form-factors (FFs) of the ∆ [18].
Using the lattice QCD techniques developed in Refs. [16–
18], we are then well-positioned to calculate the axial
charge and the effective pion-∆ coupling, Gπ∆∆, as well
as examine the GT relations as a way to relate the ∆
axial charge to Gπ∆∆.
In this letter we present the first lattice calculation of

the axial-vector and pseudoscalar form factors of the ∆
baryon. At non-zero momentum transfer q2, we find a
second pseudoscalar form-factor, yielding a second effec-
tive coupling constant, Hπ∆∆. These calculations lead to
two GT relations, which are indeed fulfilled by the lattice
results.
Axial-vector and Pseudoscalar Matrix Element. We

consider the matrix element of a current X between ∆+

states

〈∆(pf , sf )|X |∆(pi, si)〉 = uσ(pf , sf )
[

OX
]στ

uτ (pi, si),

where uσ denotes the Rarita-Schwinger vector-spinor
(σ, τ are Lorentz indices), and pi and pf are the initial
and final momenta of the ∆. For the axial-vector cur-
rent Aa

µ(x) = ψ(x)γµγ5
τa

2
ψ(x) the matrix element can

be written in terms of four Lorentz-invariant FFs, labeled
g1, g3, h1 and h3:

[

OA3
µ

]στ

= −
1

2

[

gστ
(

g1(q
2)γµγ

5 + g3(q
2)

qµ
2m∆

γ5
)

+
qσqτ

4m2
∆

(

h1(q
2)γµγ

5 + h3(q
2)

qµ
2m∆

γ5
)]

, (1)

where q = pf − pi is the momentum transfer. For the
pseudoscalar current P a(x) = ψ(x)γ5

τa

2
ψ(x), the matrix

element can be written in terms of two FFs, to be defined
below in connection to the GT relations.
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Lattice Evaluation. Axial form factors on the lattice
are extracted in a standard way from the three-point
function

〈G
∆A3

µ∆
στ (tf , t;pf ,pi; Γρ)〉 =

∑

x2, x1

e−ipf ·x2e+iq·x1 Γβα
ρ

〈Ω|T
[

χσα
∆ (x2, t2)A

3
µ(x1, t1)χ̄

τβ
∆ (0, 0)

]

|Ω〉(2)

where χ̄∆ is an interpolating operator creating a state
with the quantum numbers of the ∆+ [18] and Γρ is a set
of projectors, given by Γ4 = 1

4
(1+γ4) and Γk = iΓ4γ5γk.

A similar three-point function with A3
µ → P 3 is required

for the extraction of the pseudoscalar FFs. Technically
these are evaluated via the sequential inversion through

the sink [18] at fixed sink time-slice tf , while the A3
µ

and P 3 operator insertion is supplied at all intermedi-
ate t-slices (0 ≤ t ≤ tf ) and Fourier-transformed for all
momenta q at a small extra CPU cost.
The kinematics are fixed to a static ∆ sink (pf =

0,q = −pi). Denoting for convenience Monte-Carlo av-
erages GX

στ (Γρ,q, t) = 〈G∆X∆
στ (tf , t ;0,−q; Γρ)〉 for X =

A3
µ or P 3, we construct the optimal ratio of three-point

to two- point functions

RX
στ (Γρ,q, t) =

GX
στ (Γρ,q, t)

G∆(Γ4,0, tf)
√

G∆(Γ4,−q, tf − t)G∆(Γ4,0, t)G∆(Γ4,0, tf)

G∆(Γ4,0, tf − t)G∆(Γ4,−q, t)G∆(Γ4,−q, tf )

tf − t → ∞

t − ti → ∞

−→ ΠX
στ (Γρ,q) , (3)

where G∆(Γ4,p, t) is the ∆ propagator of momentum
p. This ratio eliminates unknown field renormalization
constants and leading time dependences and tends to a
constant at large Euclidean time separations tf − t and
t. A careful optimization in the space of the source-sink
Lorentz indices σ, τ, ρ is required and only two linear com-
binations of sequential sources suffice to provide all four
axial and two pseudoscalar FFs.
Smearing techniques are implemented resulting in sat-

isfactory suppression of excited state effects allowing the
source-sink distance to be fixed at about 1 fm [18]. Lat-
tice computations of the matrix elements of the axial-
vector and pseudoscalar currents for all transition mo-
menta vectors q contributing to a given value of Q2 =
−(pf − pi)

2 are simultaneously analyzed and the over-
constrained system determines the form factors through
a global χ2 minimization. We note that O(500) lattice
measurements are involved in the extraction of the form
factors for Q2-values up to ∼ 2 GeV2.
The parameters of the lattice ensembles used in this

calculation are given in Table I. The quenched Wilson
fermions gauge configurations enable the extraction of
the FFs with small statistical errors. In addition, we
obtained the FFs using dynamical domain-wall valence

V stat. mπ (GeV) mN (GeV) m∆ (GeV)
Quenched Wilson fermions
β = 6.0, a−1 = 2.14(6) GeV

323 × 64 200 0.563(4) 1.267(11) 1.470(15)
323 × 64 200 0.490(4) 1.190(13) 1.425(16)
323 × 64 200 0.411(4) 1.109(13) 1.382(19)

Mixed action, a−1 = 1.58(3) GeV
Asqtad (amu,d/s = 0.02/0.05), DWF (amu,d = 0.0313)

203 × 64 264 0.498(3) 1.261(17) 1.589(35)
Asqtad (amu,d/s = 0.01/0.05), DWF (amu,d = 0.0138)
283 × 64 550 0.353(2) 1.191(19) 1.533(27)

Domain Wall Fermions (DWF)
mu,d/ms = 0.004/0.03, a−1 = 2.34(3) GeV

323 × 64 1452 0.297(5) 1.27(9) 1.455(17)

TABLE I: Ensembles and parameters used in this work. We
give in the first column the lattice size, in the second the
statistics, in the third, fourth and fifth the pion, nucleon and
∆ mass in GeV respectively.

quarks matched to staggered sea fermions [19]. For the
computation of the ∆ axial charge we analyzed two ad-
ditional sets, one with the mixed action with mπ =
0.498 GeV and a second one using Nf = 2 + 1 domain
wall fermions [20] with mπ = 0.297 GeV in order to have
enough data from dynamical simulations for the chiral
extrapolation. In all cases the u and d quarks are de-
generate whereas the mass of the strange quark in the
dynamical simulations is set to its physical mass. For
the pion masses of these simulations the ∆ is stable.

Lattice results on the ∆ axial form factors: In Fig. 1
we show the four axial ∆ form-factors, g1, g3, h1 and
h3, as a function of the momentum transfer Q2. As can
be seen, results obtained with the mixed action are in
agreement with quenched results for g1 and g3. A similar
conclusion holds for h1 and h3 albeit with much larger
statistical errors in the case of the mixed action approach
that we therefore omit from the plots for clarity. The
value of the matrix element at Q2 = 0 is connected to the
axial charge defined by 〈∆++|A3

µ|∆
++〉−〈∆−|A3

µ|∆
−〉 =

G∆∆Mµ [15]. At q2 = 0 this is G∆∆ = −3g1(0).

Pseudoscalar FFs and the Goldberger-Treiman Rela-

tions. The ∆ axial charge enters in baryon χPT ex-
pressions of many important quantities such as the ax-
ial charge of the nucleon. Many phenomenological re-
sults rely on this value, which is usually treated as a
parameter to be determined from fits to experimental
or lattice data. It can be related to the π∆∆ cou-
pling via the GT relation. In Ref. [21] symmetry ar-
guments in a quartet scheme where N∗

+, N
∗
−, ∆+ and

∆− form a chiral multiplet, lead to the conclusion that
π∆±∆± couplings (with like-charged ∆s) are forbidden
at tree-level. Quark-model arguments [13] suggest that
the Gπ∆∆ = (4/5)GπNN . Clearly a non-perturbative cal-
culation within lattice QCD of this coupling, as presented
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FIG. 1: Results for the axial form-factors, g1, g3, h1 and h3.
Filled squares, filled triangles and open circles denote results
in the quenched theory with mπ = 0.563 , 0.490 , 0.411 GeV
respectively, and asterisks results using the mixed action with
mπ = 0.353 GeV. For the h1 and h3 FFs, the noisier mixed
action results are omitted for clarity.

in this work, provides valuable input to phenomenology.

Partial Conservation of the Axial Current (PCAC)
when applied to the hadronic world leads to important
phenomenological predictions such as the GT relation,
originally derived for the nucleon state. Similarly, a non-
diagonal GT relation, applicable to the axial N−∆ tran-
sition is formulated and relates the axial N −∆ coupling
cA to the πN∆ effective coupling. PCAC at the hadron
level reads: ∂µAa

µ = fπm
2
ππ

a . In the SU(2) symmetric
limit of QCD with mq denoting the up/down mass, the
pseudo-scalar density is related to the divergence of the
axial-vector current through the axial Ward-Takahashi
identity (AWI) ∂µAa

µ = 2mqP
a . Taking matrix ele-

ments of the LHS of the AWI identity between ∆ states
we can define two Lorentz-invariant π∆∆ form factors,
Gπ∆∆(q

2) and Hπ∆∆(q
2) factoring out the pion pole as
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FIG. 2: The pseudoscalar ∆ form factors Gπ∆∆ and Hπ∆∆.
The notation is the same as that of Fig. 1.

dictated by PCAC

〈∆(pf , sf )|P
3|∆(pi, si)〉 = −

1

2mq

fπm
2
π

(m2
π − q2)

×

uσ

[

gστGπ∆∆(q
2) +

qσqτ

4m2
∆

Hπ∆∆(q
2)

]

γ5uτ , (4)

Matrix elements of the AWI identity, 〈∆|∂µA
µ|∆〉 =

2mq〈∆|P |∆〉 now lead to a matrix equation, satisfied at
finite q2,

m∆

[

gσρ(g1 − τg3) +
qσqρ

4m2
∆

(h1 − τh3)

]

=

fπm
2
π

(m2
π − q2)

[

gσρGπ∆∆ +
qσqρ

4m2
∆

Hπ∆∆

]

, (5)

where τ = −q2/(2m∆)
2. We display the pseudoscalar

FFs in Fig. 2. The results using dynamical quark sim-
ulations have increased statistical errors and are consis-
tent with the quenched results. The quark mass mq,
extracted from AWI, and fπ, calculated from the pion-
to-vacuum amplitude, are taken from Ref. [16]. Our lat-
tice results are consistent with pion-pole dominance that
is manifested by a monopole dependence for g3(Q

2) and
h1(Q

2), while results on h3(Q
2) are consistent with a

dipole-dependence. we obtain a pair of GT-type rela-
tions, valid at finite q2,

fπGπ∆∆(q
2) = m∆g1(q

2) , fπHπ∆∆(q
2) = m∆h1(q

2) .(6)

The validity of the GT relations is examined by
evaluating the ratios fπGπ∆∆(Q

2)/m∆g1(Q
2) and

fπHπ∆∆(Q
2)/m∆h1(Q

2) as shown in Fig. 3. For the for-
mer ratio, for which statistical errors are smaller, lattice
data show that indeed this ratio is compatible with unity
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FIG. 3: The Goldberger-Treiman ratios from Eq. (6). The
notation is the same as in Fig.1. In the lower graph we omitted
for clarity results using the mixed action that carry larger
statistical errors.

for Q2 >
∼ 0.8GeV2 This behavior is similar to the one ob-

tained for the pseudoscalar nucleon and N −∆ couplings
GπNN and GπN∆ [16] for the same ensembles. We ex-
pect that the behavior at low Q2 will be affected by pion
cloud effects as the mass of the pion decreases towards
the physical point.

∆ axial charge and combined chiral fits. Having, for
the first time, a set of lattice results for the axial nu-
cleon charge [22], the axial N − ∆ transition coupling,
C5 [17] and the ∆ axial charge, allows us to perform a
combined fit to all three quantities using heavy baryon
χPT in the small scale expansion [15, 23, 24]. For gA we
use results obtained with twisted mass fermions since dif-
ferent discretization schemes yield results that are agree-
ment [25]. The combined fit has seven free parameters,
namely the values of the three axial coupling constants
of the nucleon, the N −∆ and the ∆, three parameters
related to the m2

π-terms in the chiral expansions of gA,
C5 and G∆∆ and a constant entering the chiral expres-
sion of C5 [24]. As can be seen in Fig. 4, lattice data for
all three observables are approximately constant within
the mass range considered. The best fits are shown by
the bands that take into account the statistical errors of
the lattice results. As have been observed in all recent
lattice studies, the physical value of gA is underestimated
and this combined fit does not provide a possible resolu-
tion to this puzzle. Having lattice results at pion masses
below 300 MeV will be essential to check the validity of
these chiral expansions.

Conclusions. We have presented the first calculation
of the axial-vector and pseudoscalar form factors of the
∆ using lattice QCD. From the most general decompo-

FIG. 4: Combined chiral fit: (a) Nucleon axial charge, gA,
fitted to lattice data obtained with Nf = 2 twisted mass
fermions (TMF) [22]. The physical value is shown by the
asterisk; (b) Real part of axial N to ∆ transition coupling
C5(0) [17]; (c) Real part of ∆ axial charge G∆∆ = −3g1(0).

sition of the axial-vector and pseudoscalar vertex we de-
rived two Goldberger-Treiman relations whose validity is
satisfied at the same level of accuracy as that found for
the nucleon case [16]. At zero momentum transfer the
∆ matrix element yields the phenomenologically impor-
tant ∆ axial charge, which in this work is obtained for
pion masses in the range of about 300 MeV to 500 MeV.
As in the case of the nucleon axial charge, it shows a
weak dependence on the pion mass in this mass range.
Using lattice results for the axial nucleon charge, the ax-
ial N to ∆ transition coupling and the ∆ axial charge
we performed, for the first time, a combined fit to all
three quantities that provides a reasonable description
to the lattice results. However, these state-of-the-art lat-
tice results and chiral perturbation calculations, yield a
value for the nucleon axial charge lower than its exper-
imental value. Such a discrepancy between lattice and
experimental results are seen in several key hadronic ob-
servables [25] calling for high accuracy lattice calcula-
tions with pion mass below 300 MeV in order to gain
some insight on the chiral behavior of these fundamental
quantities.
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