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The general relativistic (Mercury-type) periastron ad&is calculated here for the first time with exquisite
precision in full general relativity. We use accurate nugarrelativity simulations of spinless black hole bi-
naries with mass ratios/8 < my/mp < 1 and compare with the predictions of several analytic appration
schemes. We find the effective-one-body model to be rembrkaburate, and, surprisingly, so also the predic-
tions of self-force theory [replacingy /mp — mymp/(my + mp)2]. Our results can inform a universal analytic
model of the two-body dynamics, crucial for ongoing and fatgravitational-wave searches.

PACS numbers: 04.25.-g,04.25.dg,04.25.Nx,97.60.Lf

Introduction. The anomalous rate of Mercury’s perihelion  Neglecting radiation reaction, the motion of two non-
advance was originally recognized in 1859 by the astronomespinning black holes on a generic eccentric orbit involves t
Urbain Le Verrier. For the first time, Newton’s law of uni- frequencies: the radial frequency (or mean moti@p) and
versal gravitation could not be reconciled with observatio the averaged angular frequerRy, respectively defined by
Treating Mercury as a test body in free fall in the gravitatib

field generated by the m_aM‘@ of the Sun, I.Ei.ns.tein derived Q= 2_71’ 0y — } /Pq)(t)dt Ko, @
the lowest order (weak-field) general relativistic anguldr P PJo
vance per orbit [1] whereP is the radial period, i.e. the time interval between two
6mGM,, successive periastron passagess d¢ /dt is the time deriva-
A® = Fal—)’ (1) tive of the orbital phase(t), andAd/(2mm) = K — 1 is the

fractional advance of the periastron per radial period.hin t
wherea ande are the semi-major axis and eccentricity of Mer- circular orbit limit, the relation betweelk = Q4 /Q; andQy
cury’s orbit, respectively. Equatioll (1) perfectly acctadhfor  is coordinate invariant (for a large class of physicallys@a
the observed discrepancyef43” per century, thus providing able coordinate systems), and therefore provides a nagfral
the first successful test of general relativity. More relyetite  erence for comparing between the predictions of the awalyti
same effect—but with a much larger amplitude, of order a fewand numerical methods currently available.
degrees per year—has been observed in the orbital motion of In this Letter we present new accurate NR simulations start-
binary pulsars |2]. Today, the exciting prospects of obisgrv ing at lower orbital frequencies than in previous wark [7—9]
gravitational waves from the inspiral and merger of compactVe outline the respective computations of the invariant re-
binaries, using interferometric detectors like LIGO orgdr  lation K(Qg) in numerical relativity, post-Newtonian theory,
provide a modern context for the problem of relativisticiper the effective-one-body formalism, and black hole perttidma
astron advance, and a motivation to go far beyond Einstein'theory. We then perform an extensive comparison which, for
weak-field test-particle approximation. the first time, (i) encompasses all of these methods, and (i)

In this Letter we restrict our attention to binaries compbse focuses on the orbital dynamics of the binary, rather than th
of two black holes. Their orbital dynamics can be analyzed usasymptotic gravitational waveform. We also discuss the im-
ing several approximation schemes in general relativibgtp  plications for the modelling of coalescing compact bingrie
Newtonian expansions|[3], black hole perturbation thedty [ (We henceforth s6s=c=1.)
and the effective-one-body model [5]. It can also be studied Numerical Relativity. The periastron advance of non-
using fully nonlinear numerical relativity (NR). While NRan  spinning black hole binaries was estimated for the first time
now routinely perform accurate binary black hole simulasio in general relativistic numerical simulations in [10]. Inet
[6], approximation methods remain valuable given the highpresent work, we improve considerably on the accuracy of
computational cost of these simulations, and their rdetlic these calculations. Our results are based on new and longer
utility when the mass ratio is too extreme. It is important tosimulations of the late stage of the inspiral of black hole bi
assess the predictions of the various approximations sigainnaries, using the Spectral Einstein C&jEC [11,112], with
the NR benchmark, since (i) it allows crucial cross-vaiiolat mass ratiog] = my /m, between 1:1 and 1:8, and eccentrici-
tests, (ii) it helps delineate the respective domains aflitgl  tiesein the rangg0.00150.023. These runs are summarized
of each method, and (iii) it can inform the development of ain Table[l, and will be described in detail elsewhere [2, 13].
universal semi-analytical model of the binary dynamics. (Ref. [10] discusses the definition efn these simulations.)



q d/m e Nop ao a a M mQg binaries was required, leading to the extension of this 18N r
1 19 0021 34 09949 0589 -79.1 0.0111 0.0312 Sultto 2PN order[14]. [As usual we refert®N as the order
2/3 18 0023 27 0.9950 0573 -75.9 0.0129 00316 guivalent to terms7(c ") in the equations of motion be-
13 14 0002 20 0.9821 1.692 -87.1 0.0181 0.0313 yond the Newtonian accellera_\tlon.] More recently, the need.f
' ' ' - ' extremely accurate gravitational-wave templates mautglli

1/5 14 0.008 23 0.9879 1.154 -62.8 0.0183 0.0361 o inspiralling phase of coalescing compact binaries moti
1/6 13 0015 20 0.9890 1.071 -57.0 0.0204 0.0333  \/ated the computation of the equations of motion through 3PN
1/8 13 0.0015 24 1.0028 -0.099 -26.8 0.0197 0.0355  grder. These results allowed also the calculation of thexper
tron advance at the 3PN accuracy for eccentric orbits [17].

For quasi-circular orbits, combining Egs. (5.8) and (5.25)
of Ref. [17], we obtain the 3PN-accurate expressiol @fs

TABLE [: Simulation parameters. Hetg= my /mp, m=m +np, d
is the initial coordinate separatioathe initial eccentricity, andNy
the total number of orbits in the simulation. The fitting pasers

{ag,a1,a2} [cf. Eq. (3)] are computed for the restricted frequency 27
rangeQ; < Q¢ < Qj. Kapn=1-+3X+ (7 - 7V> NG
135 [649 123 2\ 3 4
We computeQy andQ, using the orbital frequenc@(t) (7 - {T - 5“2] v+7v )X +0X). 4

extracted from the motion of the apparent-horizon ceniars (

harmonic coordinates): lef(t) be the coordinates of the cen- The symmetric mass ratio= mymp/n? is such thav = 1/4

ter of each black hole, and define their relative separatiofior an equal mass binary, amd— 0 in the extreme mass ratio

r = c1 — Cz; thenQ = |r x | /r?, where the Euclidean cross limit. The termO v2 in Eq. 4), which is a 3PN effect, con-
product and norm are used. The frequefiX{y) can be writ-  tributes less than 1% tpy, for all mass ratios. This suggests
ten as the sum of a secular piece (given by the average fréhat the exackK may be well approximated by a linear func-
quencyQy) and a small oscillatory remainder—both of which tion of v. Figure< IEB show a good agreement between the
drift slowly in time due to radiation reaction. To compute 3PN and NR results fog = 1, with < 1% relative difference
Knr at some coordinate tinig, we choose a time interval of even at the high-frequency end. However, the performance of
widthW x 211/Q(T), centered off, and fitQ(t) to the model  the PN approximation deteriorates with decreasjng

Q(t) = po(p1 —t)P2+ pscos[ps+ ps(t—T) + pe(t — T)?], Effective-One-Body (EOB). The EOB formalisml[5] maps
where thep;’s are fitting parameters. We then wrilg (T) =  the conservative part of the PN dynamics of a compact binary
po(p1— T)P2 andQ,(T) = ps, compute the ratikyg(T) = system onto the dynamics of a test particle of reduced mass
Qy(T)/Q:(T), and hence obtaikinr as a function ofg. Fi- ¢ = mv = mump/m in a time-independent and spherically

nally, we fitKnr(Qg ) to a smooth quadratic polynomial using symmetric effective metricsd; = —A(r; v) dt?+B(r; v) dr? +
) r2(d6? + sirf8d¢?), which reduces to the Schwarzschild

Knr = [80-+21(mQy) +85(MQ4 )] Kschw, (3 metric of a black hole of massin the limit v — 0. The ex-
wherem = my + my is the total mass of the binary. The results Pansions of the EOB potentiatsandD = (AB) ' in terms of
of the fits are given in Tablé I. For convenience, the numerithe Schwarzschild-like coordinatie= m/r are known through
cal periastron advandé is normalized by the test-particle 3PN order as[5, 18\ = 1—2u+2vud+ (5 — ) vu'+
result Ksehws Which is known in closed form as [14,/15] €(u®), andD = 1+6vu?+ (52— 6v)vu®+ & (u*). To en-
Kschw = (1 — 6x)Y/2, wherex = (mQy)?/2 is the usual di- force the presence of an EOB innermost stable circular orbit
mensionless coordinate invariant post-Newtonian paramet (ISCO), Ref. [18] suggested replaciAgby its Padé approx-

The variance in the numerical data for various window sizesmant of order(1,3), Ap = (1+ au)/(1+ bu+ cu? + du®),

W provides an estimate of the error Kyg. We point out  whose Taylor series coincides with the known 3PN result.
that the finite (non-zero) eccentricity in the NR simulaion ~ From the recent analysis of slightly eccentric orbits in the
introduces a small error, since we are interested irethe0  EOB formalism|[19], the effective-one-body prediction foe
limit. However, as the leading-order resilt (1) suggests, a periastron advance in the limit of zero eccentricity is gibgy
calculations at higher post-Newtonian (PN) orders confirm,
this error scales like?, which in our simulations is always
< 5x 1074, and decreasing monotonically with time.

The numerical data form the basis for our comparisons. We
will now discuss the different approximation schemes imfur whereA, = dAp/du, andA = ApAL + 2u(A{3)2 — UApPAY van-
summarizing the results in Fidgd. 1 ddd 2 (showfhas a func- ishes at the EOB ISCO. To obtain the invariant relation
tion of frequency for two fixed mass ratios), and FFlg. 3 (show-Kgog(X), one needs to computegivenx, which we do here
ing K as a function of mass ratio for a given frequency). numerically (for any givew) from the expression of the EOB

Post-Newtonian Theory. Einstein’s result[{ll) was general- Hamiltonian restricted to circular orbits, and Hamiltoatua-
ized to arbitrary masseas; andm, by Robertson/[16]. Fol- tions of motion|[19]. The resulting curves are displayed:id r
lowing the discovery of binary pulsars in the 1970s, an im-in Figs[A£8. Fog= 1 and 23, the EOB(3PN) predictiofi{5)
proved modelling of the orbital dynamics of these compacis within the numerical error up toQg ~ 0.022. For all the

Ap(u)
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FIG. 1: The periastron advandé of an equal mass black hole binary, in FIG. 2: Same as in Fid]1, but for a mass ratje= 1/8. Note that for an
the limit of zero eccentricity, as a function of the orbiteéduencyQg of orbital frequencymQy ~ 0.03, corresponding to a separation- 10m, the
the circular motion. The NR results are indicated by the estaaded region.  periastron advance reaches half an orbit per radial period.
The PN and EOB results are valid at 3PN order. The lower pdr@is the
relative differencedK /K = (K — Knr)/KNR-

Sincep(x) > 0 for all stable circular orbits, thé'(q) GSF

other mass ratios, the EOB(3PN) result is within the nunag¢ric decreasesq the rate of precession. Note_ thgt the forma diver
gence oK:gp at the ISCO limit Kk — 1/6) is simply a conse-

error at all frequencies. When using the EOB poterfial . - ;
with 4PN anquPN terms calibrate(?to a set ofhigmy(/ ;CCU_quence of the fact th&@, vanishes there (by definition), while

- . . . Qg remains finite. This divergence might explain why the
rate unequal mass non-spinning binary black hole simulatio £ 1h dard PN ! deteri
[20], the EOB prediction is within the numerical error at all convergence of the standar series seems to deteriorate

with decreasing) [25], as also illustrated by our results (cf.

frequencies and for all mass ratios considered. This remark_. .
able agreement could be attributed in part to the “polef'—likeli:'g'lg)' We remind the reader that ERJ (6) captures only the

structure at the EOB ISCO in EqJ(5), which is absent frOmconservativeeffect of the GSF, and has a limited physical rel-
the standard PN resulfl(4) ' evance near the ISCO, where the actual dynamics transitions

Perturbation Theory and the Gravitational Self-Force. Ex- from an_adlab]:';l tr':: cgglszl-cwcuclja_lr |nsp|| ral (dn;/gn2b7y thest
treme mass ratio inspirals (EMRIs) of compact objects intoo‘r"\t/'\\//ee rl?(l)?/\(/:etuornt t(? distst;) 2nelr?)?ttrr1)eurr]$§s!c S'L’rikirll findin
massive black holes, for whichy, > m, are important . P g findings
sources of low-frequency gravitational radiation for ftu of our siudy. Sincey ande: a/(1+0q)” coincide at leading
space-based detectors. Modelling the dynamics of these Sygrder, namely) = v + 6(v<), we may recast EQL6) as
tems requires going beyond the geodesic approximation, by 1
taking into account the back-reaction effect due to therinte Késg=
action of the small object with its own gravitational pektar
tion. This “gravitational self-force” (GSF) effect has ealy which, unlikngs,:, is symmetric undemy < mp. The solid
been computed for generic (bound) geodesic orbits around §,e curves in Figs] 33 shok!.. Remarkably, while the
Schwarzschild black hole [21=23]. In particular, #1€q) cor-  g5reement betweels- andKnr becomes manifest only at
regtion to the_ test-mas; restltchw h{;\s been derived [524]. sufficiently smallq (as expected)K Y appears to agree ex-
This calculation detezrmmed (numerically) th% teptx) in remely well withKyg atall mass ratios. This suggests that
the functionW = 1/K< = 1—6x+qp(x) + 0(q°). There-  he qypstitutiom — v amounts to an efficient “resummation”
sults are well fitted (at the 16 level) by the rational func- ¢ the g-expansion, to the effect that much of the functional
tion p = 14¢(1+ ax)/(1+ Bx+ yx®), with a = 129906,  form K (x) is captured by the?(v) term, even for large,

B =457724, and/ = —10.3124. (This model improves upon - a fe\y heuristic explanations for this behavior may be sug-
the model of Ref.[24]; itis based on a much denser sample %ested. (i) As mentioned earlier, quadratic corrections in
GSF data points in the relevant frequency range.) In terms ol ter the PN expression fét only at 3PN [recall Eq.[{4)],

the quantitk we have and account for less than 1% Isfat this order. This implies

1.V PX

2
ot 21oex VI O

0 1 q p(x) 5 that the linear-inv approximation must be very accurate, at
Kesr= 6 -5 e T90 )} : (6) least at small frequencies. (i) The true functiéfx; m;, my)
B must be invariant under exchangg < mp. The expansion
We used this expression, with the above analytic fitdox), in v, K¢gp satisfies this symmetry by definition of whereas

to produce the dashed blue curves in Hig§l 1-3. the expansion i, Kgs,:, does not. (iii) Assuming the co-



4

L [ — B = a | Our direct comparison between perturbative and full NR re-
0f- &Sg\& _ - sults is the first of its kind. Th&'(q) GSF prediction agrees
[ - i with the NR data for small mass ratios (eq— 1/8 or 1/6)
¢ -0.006- - to within a relative difference of magnitudec?, as expected.
N I 0.04F =0 This provides an extremely strong validity test for both NR
W 0.012- 3 14 and GSF calculations. Furthermore, the sign and magnitude
i 5-8EOB RN, 7 of the differenceknr — Kage give us valuable, hitherto inac-
-0.018; c—oGSR -0.04- S 4 1 cessible information about the second-order GSF effect.
Lo AAPN o1 The above validation test is further reinforced by the 3PN
0004 +_+gcsh|__“|¥ A result, which shows a good agreement with the NR data at
=1 0 0.5 1] small frequencies, or “large” separations (down to 10m),
0 53 04 08 08 T especially for comparable masses (e.g.gfer 1 or 2/3). Our
q comparison also reaffirms the expectation that the PN approx

imation performs less well in the small mass-ratio regime.
FIG. 3: Ihe rfelag\s diﬁe(;%gczéKT/hK :Pl(\lK *ENS())/;NR aian”Cti%Oftfh;N We find that the EOB(3PN) prediction of the periastron ad-
(Trz: r‘ltzlr:gqs’hg(rjed a¢rea rﬁarké theirror r?]r;rgin of tstl\lls (?l;;r?/eéﬁlult:are vance I$ in very good agreemgntwnh the numer_lcal one QCI’OSS
qualitatively identical and quantitatively similar forhatr values of2,. the entire range of mass ratios and frequencies considered.
This result supports the idea that the EOB formalism can de-
scribe the binary dynamics all mass ratios.
efficientsa, in the formal expansio = ,an(x)v" do not Finally, we observe that the simple replacenmgnt v can
increase witm (which, however, only a future calculation of extend the validity of the GSF approximation far beyond the
higher-order GSF terms could confirm), this expansion WIllEMRI regime. Indeed, our mod&}s- agrees very well with
exhibit a fast convergence since<Ov < 1/4; the same can- the NR data at all frequencies, and for all mass ratios con-
not be said of thg-expansion. sidered, including the equal mass case. This surprisingtres
Comparison of the GSF curves in Fig$[]l-3 with the NRsuggests that GSF calculations may very well find applica-
benchmark leads us to yet another important observati@s. It tion in a broader range of physical problems than originally
evident that the second-order GSF correctiok {@e. the un-  envisaged, including the modelling of intermediate mass ra
known term] ¢?) has aroppositesign with respect to the first-  tio inspirals, a plausible source of gravitational wavesAd-
order term; namely, the second-order GSF acts to increase tlvanced LIGO/Virgol[28].
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