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The general relativistic (Mercury-type) periastron advance is calculated here for the first time with exquisite
precision in full general relativity. We use accurate numerical relativity simulations of spinless black hole bi-
naries with mass ratios 1/8 6 m1/m2 6 1 and compare with the predictions of several analytic approximation
schemes. We find the effective-one-body model to be remarkably accurate, and, surprisingly, so also the predic-
tions of self-force theory [replacingm1/m2 → m1m2/(m1+m2)

2]. Our results can inform a universal analytic
model of the two-body dynamics, crucial for ongoing and future gravitational-wave searches.

PACS numbers: 04.25.-g,04.25.dg,04.25.Nx,97.60.Lf

Introduction. The anomalous rate of Mercury’s perihelion
advance was originally recognized in 1859 by the astronomer
Urbain Le Verrier. For the first time, Newton’s law of uni-
versal gravitation could not be reconciled with observation.
Treating Mercury as a test body in free fall in the gravitational
field generated by the massM⊙ of the Sun, Einstein derived
the lowest order (weak-field) general relativistic angularad-
vance per orbit [1]

∆Φ =
6πGM⊙

c2 a(1− e2)
, (1)

wherea ande are the semi-major axis and eccentricity of Mer-
cury’s orbit, respectively. Equation (1) perfectly accounted for
the observed discrepancy of∼ 43” per century, thus providing
the first successful test of general relativity. More recently, the
same effect—but with a much larger amplitude, of order a few
degrees per year—has been observed in the orbital motion of
binary pulsars [2]. Today, the exciting prospects of observing
gravitational waves from the inspiral and merger of compact
binaries, using interferometric detectors like LIGO or Virgo,
provide a modern context for the problem of relativistic peri-
astron advance, and a motivation to go far beyond Einstein’s
weak-field test-particle approximation.

In this Letter we restrict our attention to binaries composed
of two black holes. Their orbital dynamics can be analyzed us-
ing several approximation schemes in general relativity: post-
Newtonian expansions [3], black hole perturbation theory [4],
and the effective-one-body model [5]. It can also be studied
using fully nonlinear numerical relativity (NR). While NR can
now routinely perform accurate binary black hole simulations
[6], approximation methods remain valuable given the high
computational cost of these simulations, and their restricted
utility when the mass ratio is too extreme. It is important to
assess the predictions of the various approximations against
the NR benchmark, since (i) it allows crucial cross-validation
tests, (ii) it helps delineate the respective domains of validity
of each method, and (iii) it can inform the development of a
universal semi-analytical model of the binary dynamics.

Neglecting radiation reaction, the motion of two non-
spinning black holes on a generic eccentric orbit involves two
frequencies: the radial frequency (or mean motion)Ωr, and
the averaged angular frequencyΩϕ , respectively defined by

Ωr =
2π
P

, Ωϕ =
1
P

∫ P

0
ϕ̇(t)dt = K Ωr , (2)

whereP is the radial period, i.e. the time interval between two
successive periastron passages,ϕ̇ = dϕ/dt is the time deriva-
tive of the orbital phaseϕ(t), and∆Φ/(2π) = K − 1 is the
fractional advance of the periastron per radial period. In the
circular orbit limit, the relation betweenK = Ωϕ/Ωr andΩϕ
is coordinate invariant (for a large class of physically reason-
able coordinate systems), and therefore provides a naturalref-
erence for comparing between the predictions of the analytical
and numerical methods currently available.

In this Letter we present new accurate NR simulations start-
ing at lower orbital frequencies than in previous work [7–9].
We outline the respective computations of the invariant re-
lation K(Ωϕ) in numerical relativity, post-Newtonian theory,
the effective-one-body formalism, and black hole perturbation
theory. We then perform an extensive comparison which, for
the first time, (i) encompasses all of these methods, and (ii)
focuses on the orbital dynamics of the binary, rather than the
asymptotic gravitational waveform. We also discuss the im-
plications for the modelling of coalescing compact binaries.
(We henceforth setG = c = 1.)

Numerical Relativity. The periastron advance of non-
spinning black hole binaries was estimated for the first time
in general relativistic numerical simulations in [10]. In the
present work, we improve considerably on the accuracy of
these calculations. Our results are based on new and longer
simulations of the late stage of the inspiral of black hole bi-
naries, using the Spectral Einstein CodeSpEC [11, 12], with
mass ratiosq ≡ m1/m2 between 1:1 and 1:8, and eccentrici-
tiese in the range[0.0015,0.023]. These runs are summarized
in Table I, and will be described in detail elsewhere [9, 13].
(Ref. [10] discusses the definition ofe in these simulations.)
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q d/m e Norb a0 a1 a2 mΩi mΩ f

1 19 0.021 34 0.9949 0.589 -79.1 0.0111 0.0312

2/3 18 0.023 27 0.9950 0.573 -75.9 0.0129 0.0316

1/3 14 0.002 29 0.9821 1.692 -87.1 0.0181 0.0313

1/5 14 0.008 23 0.9879 1.154 -62.8 0.0183 0.0361

1/6 13 0.015 20 0.9890 1.071 -57.0 0.0204 0.0333

1/8 13 0.0015 24 1.0028 -0.099 -26.8 0.0197 0.0355

TABLE I: Simulation parameters. Hereq ≡ m1/m2, m ≡ m1+m2, d
is the initial coordinate separation,e the initial eccentricity, andNorb
the total number of orbits in the simulation. The fitting parameters
{a0,a1,a2} [cf. Eq. (3)] are computed for the restricted frequency
rangeΩi 6 Ωϕ 6 Ω f .

We computeΩϕ andΩr using the orbital frequencyΩ(t)
extracted from the motion of the apparent-horizon centers (in
harmonic coordinates): letci(t) be the coordinates of the cen-
ter of each black hole, and define their relative separation
r = c1 − c2; thenΩ = |r× ṙ|/r2, where the Euclidean cross
product and norm are used. The frequencyΩ(t) can be writ-
ten as the sum of a secular piece (given by the average fre-
quencyΩϕ ) and a small oscillatory remainder—both of which
drift slowly in time due to radiation reaction. To compute
KNR at some coordinate timeT , we choose a time interval of
widthW ×2π/Ω(T), centered onT , and fitΩ(t) to the model
Ω(t) = p0(p1 − t)p2 + p3cos

[

p4 + p5(t −T ) + p6(t − T )2
]

,
where thepi’s are fitting parameters. We then writeΩϕ(T ) =
p0(p1− T )p2 andΩr(T ) = p5, compute the ratioKNR(T ) =
Ωϕ(T )/Ωr(T ), and hence obtainKNR as a function ofΩϕ . Fi-
nally, we fitKNR(Ωϕ ) to a smooth quadratic polynomial using

KNR =
[

a0+ a1(mΩϕ)+ a2(mΩϕ)
2]KSchw, (3)

wherem = m1+m2 is the total mass of the binary. The results
of the fits are given in Table I. For convenience, the numeri-
cal periastron advanceKNR is normalized by the test-particle
result KSchw, which is known in closed form as [14, 15]
KSchw = (1− 6x)−1/2, wherex = (mΩϕ)

2/3 is the usual di-
mensionless coordinate invariant post-Newtonian parameter.

The variance in the numerical data for various window sizes
W provides an estimate of the error inKNR. We point out
that the finite (non-zero) eccentricity in the NR simulations
introduces a small error, since we are interested in thee → 0
limit. However, as the leading-order result (1) suggests, and
calculations at higher post-Newtonian (PN) orders confirm,
this error scales likee2, which in our simulations is always
. 5×10−4, and decreasing monotonically with time.

The numerical data form the basis for our comparisons. We
will now discuss the different approximation schemes in turn,
summarizing the results in Figs. 1 and 2 (showingK as a func-
tion of frequency for two fixed mass ratios), and Fig. 3 (show-
ing K as a function of mass ratio for a given frequency).

Post-Newtonian Theory. Einstein’s result (1) was general-
ized to arbitrary massesm1 andm2 by Robertson [16]. Fol-
lowing the discovery of binary pulsars in the 1970s, an im-
proved modelling of the orbital dynamics of these compact

binaries was required, leading to the extension of this 1PN re-
sult to 2PN order [14]. [As usual we refer tonPN as the order
equivalent to termsO(c−2n) in the equations of motion be-
yond the Newtonian acceleration.] More recently, the need for
extremely accurate gravitational-wave templates modelling
the inspiralling phase of coalescing compact binaries moti-
vated the computation of the equations of motion through 3PN
order. These results allowed also the calculation of the perias-
tron advance at the 3PN accuracy for eccentric orbits [17].

For quasi-circular orbits, combining Eqs. (5.8) and (5.25)
of Ref. [17], we obtain the 3PN-accurate expression ofK as

K3PN= 1+3x+

(

27
2

−7ν
)

x2

+

(

135
2

−
[

649
4

− 123
32

π2
]

ν +7ν2
)

x3+O(x4) . (4)

The symmetric mass ratioν ≡ m1m2/m2 is such thatν = 1/4
for an equal mass binary, andν → 0 in the extreme mass ratio
limit. The term∝ ν2 in Eq. (4), which is a 3PN effect, con-
tributes less than 1% toK3PN, for all mass ratios. This suggests
that the exactK may be well approximated by a linear func-
tion of ν. Figures 1–3 show a good agreement between the
3PN and NR results forq = 1, with . 1% relative difference
even at the high-frequency end. However, the performance of
the PN approximation deteriorates with decreasingq.

Effective-One-Body (EOB). The EOB formalism [5] maps
the conservative part of the PN dynamics of a compact binary
system onto the dynamics of a test particle of reduced mass
µ ≡ mν = m1m2/m in a time-independent and spherically
symmetric effective metric ds2

eff =−A(r;ν)dt2+B(r;ν)dr2+

r2(dθ 2 + sin2 θ dϕ2), which reduces to the Schwarzschild
metric of a black hole of massm in the limit ν → 0. The ex-
pansions of the EOB potentialsA andD̄ ≡ (AB)−1 in terms of
the Schwarzschild-like coordinateu=m/r are known through
3PN order as [5, 18]A = 1−2u+2ν u3+

(

94
3 − 41

32π2
)

ν u4+

O(u5), andD̄ = 1+ 6ν u2+(52−6ν)ν u3+O(u4). To en-
force the presence of an EOB innermost stable circular orbit
(ISCO), Ref. [18] suggested replacingA by its Padé approx-
imant of order(1,3), AP = (1+ au)/(1+ bu + cu2 + du3),
whose Taylor series coincides with the known 3PN result.

From the recent analysis of slightly eccentric orbits in the
EOB formalism [19], the effective-one-bodyprediction forthe
periastron advance in the limit of zero eccentricity is given by

KEOB =

√

A′
P(u)

D̄(u)∆(u)
, (5)

whereA′
P = dAP/du, and∆ = APA′

P +2u(A′
P)

2− uAPA′′
P van-

ishes at the EOB ISCO. To obtain the invariant relation
KEOB(x), one needs to computeu givenx, which we do here
numerically (for any givenν) from the expression of the EOB
Hamiltonian restricted to circular orbits, and Hamilton’sequa-
tions of motion [19]. The resulting curves are displayed in red
in Figs. 1–3. Forq = 1 and 2/3, the EOB(3PN) prediction (5)
is within the numerical error up tomΩϕ ∼ 0.022. For all the
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FIG. 1: The periastron advanceK of an equal mass black hole binary, in
the limit of zero eccentricity, as a function of the orbital frequencyΩϕ of
the circular motion. The NR results are indicated by the cyan-shaded region.
The PN and EOB results are valid at 3PN order. The lower panel shows the
relative differenceδK/K ≡ (K −KNR)/KNR.

other mass ratios, the EOB(3PN) result is within the numerical
error at all frequencies. When using the EOB potentialA(u)
with 4PN and 5PN terms calibrated to a set of highly accu-
rate unequal mass non-spinning binary black hole simulations
[20], the EOB prediction is within the numerical error at all
frequencies and for all mass ratios considered. This remark-
able agreement could be attributed in part to the “pole-like”
structure at the EOB ISCO in Eq. (5), which is absent from
the standard PN result (4).

Perturbation Theory and the Gravitational Self-Force. Ex-
treme mass ratio inspirals (EMRIs) of compact objects into
massive black holes, for whichm2 ≫ m1, are important
sources of low-frequency gravitational radiation for future
space-based detectors. Modelling the dynamics of these sys-
tems requires going beyond the geodesic approximation, by
taking into account the back-reaction effect due to the inter-
action of the small object with its own gravitational perturba-
tion. This “gravitational self-force” (GSF) effect has recently
been computed for generic (bound) geodesic orbits around a
Schwarzschild black hole [21–23]. In particular, theO(q) cor-
rection to the test-mass resultKSchw has been derived [24].
This calculation determined (numerically) the termρ(x) in
the functionW ≡ 1/K2 = 1− 6x+ qρ(x)+O(q2). The re-
sults are well fitted (at the 10−5 level) by the rational func-
tion ρ = 14x2(1+ αx)/(1+ β x + γx2), with α = 12.9906,
β = 4.57724, andγ =−10.3124. (This model improves upon
the model of Ref. [24]; it is based on a much denser sample of
GSF data points in the relevant frequency range.) In terms of
the quantityK we have

Kq
GSF=

1√
1−6x

[

1− q
2

ρ(x)
1−6x

+O(q2)

]

. (6)

We used this expression, with the above analytic fit forρ(x),
to produce the dashed blue curves in Figs. 1–3.
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FIG. 2: Same as in Fig. 1, but for a mass ratioq = 1/8. Note that for an
orbital frequencymΩϕ ∼ 0.03, corresponding to a separationr ∼ 10m, the
periastron advance reaches half an orbit per radial period.

Sinceρ(x)> 0 for all stable circular orbits, theO(q) GSF
decreases the rate of precession. Note that the formal diver-
gence ofKq

GSF at the ISCO limit (x → 1/6) is simply a conse-
quence of the fact thatΩr vanishes there (by definition), while
Ωϕ remains finite. This divergence might explain why the
convergence of the standard PN series seems to deteriorate
with decreasingq [25], as also illustrated by our results (cf.
Fig. 3). We remind the reader that Eq. (6) captures only the
conservative effect of the GSF, and has a limited physical rel-
evance near the ISCO, where the actual dynamics transitions
from an adiabatic quasi-circular inspiral (driven by the dissi-
pative piece of the GSF) to a direct plunge [26, 27].

We now turn to discuss one of the most striking findings
of our study. Sinceq andν = q/(1+ q)2 coincide at leading
order, namelyq = ν +O(ν2), we may recast Eq. (6) as

Kν
GSF=

1√
1−6x

[

1− ν
2

ρ(x)
1−6x

+O(ν2)

]

, (7)

which, unlikeKq
GSF, is symmetric underm1 ↔ m2. The solid

blue curves in Figs. 1–3 showKν
GSF. Remarkably, while the

agreement betweenKq
GSF andKNR becomes manifest only at

sufficiently smallq (as expected),Kν
GSF appears to agree ex-

tremely well withKNR at all mass ratios. This suggests that
the substitutionq → ν amounts to an efficient “resummation”
of the q-expansion, to the effect that much of the functional
form K(x) is captured by theO(ν) term, even for largeq.

A few heuristic explanations for this behavior may be sug-
gested. (i) As mentioned earlier, quadratic corrections inν
enter the PN expression forK only at 3PN [recall Eq. (4)],
and account for less than 1% ofK at this order. This implies
that the linear-in-ν approximation must be very accurate, at
least at small frequencies. (ii) The true functionK(x;m1,m2)
must be invariant under exchangem1 ↔ m2. The expansion
in ν, Kν

GSF, satisfies this symmetry by definition ofν, whereas
the expansion inq, Kq

GSF, does not. (iii) Assuming the co-
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FIG. 3: The relative differenceδK/K = (K−KNR)/KNR as a function of the
mass ratioq, for mΩϕ = 0.022. The PN and EOB results are valid at 3PN
order. The shaded area marks the error margin of the NR data. The results are
qualitatively identical and quantitatively similar for other values ofΩϕ .

efficientsan in the formal expansionK = ∑n an(x)νn do not
increase withn (which, however, only a future calculation of
higher-order GSF terms could confirm), this expansion will
exhibit a fast convergence since 0< ν 6 1/4; the same can-
not be said of theq-expansion.

Comparison of the GSF curves in Figs. 1–3 with the NR
benchmark leads us to yet another important observation. Itis
evident that the second-order GSF correction toK (i.e. the un-
known term∝ q2) has anopposite sign with respect to the first-
order term; namely, the second-order GSF acts to increase the
rate of periastron advance. This is a new result, which illus-
trates the potential merit of cross-cultural comparisons of the
kind advocated in this work.

Summary and Discussion. The advent of precision-NR
technology allows us, for the first time, to extract accuratein-
formation about thelocal dynamics in binary black hole inspi-
rals (previous studies focused primarily on asymptotic wave-
forms), and carry out meaningful comparisons with the results
of analytic approaches to the problem. These comparisons and
cross-check validations among analytic approximants and NR
results are crucial for developing faithful analytic waveforms
to be used in LIGO/Virgo searches.

Here we focused on a particular aspect of the dynamics,
namely the relativistic periastron advance. We worked in a
highly relativistic regime, where the periastron advance can
reach values as high as half an orbit per radial period (far
greater than the meagre∼ 43” per century advance of Mer-
cury’s perihelion!) We employed the invariant relationK(Ωϕ)
as a reference for comparison, which is meaningful only in
the adiabatic regime where the dissipative evolution is “slow”.
For the range of inspiral orbits covered by our NR simulations,
a measure of adiabaticity is provided by 0.3%. Ω̇ϕ/Ω2

ϕ .

1.7%. This suggests that inclusion of dissipative effects in the
PN/EOB/GSF results would not substantially affect our con-
clusions. The very good agreement between the analytical and
NR results at low frequency, where the error inKNR is small-
est, also supports this expectation.

Our direct comparison between perturbative and full NR re-
sults is the first of its kind. TheO(q) GSF prediction agrees
with the NR data for small mass ratios (e.g.q = 1/8 or 1/6)
to within a relative difference of magnitude∼ q2, as expected.
This provides an extremely strong validity test for both NR
and GSF calculations. Furthermore, the sign and magnitude
of the differenceKNR−Kq

GSF give us valuable, hitherto inac-
cessible information about the second-order GSF effect.

The above validation test is further reinforced by the 3PN
result, which shows a good agreement with the NR data at
small frequencies, or “large” separations (down tor ∼ 10m),
especially for comparable masses (e.g. forq = 1 or 2/3). Our
comparison also reaffirms the expectation that the PN approx-
imation performs less well in the small mass-ratio regime.

We find that the EOB(3PN) prediction of the periastron ad-
vance is in very good agreement with the numerical one across
the entire range of mass ratios and frequencies considered.
This result supports the idea that the EOB formalism can de-
scribe the binary dynamics atall mass ratios.

Finally, we observe that the simple replacementq → ν can
extend the validity of the GSF approximation far beyond the
EMRI regime. Indeed, our modelKν

GSF agrees very well with
the NR data at all frequencies, and for all mass ratios con-
sidered, including the equal mass case. This surprising result
suggests that GSF calculations may very well find applica-
tion in a broader range of physical problems than originally
envisaged, including the modelling of intermediate mass ra-
tio inspirals, a plausible source of gravitational waves for Ad-
vanced LIGO/Virgo [28].
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