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Optically controllable photonic structures with zero absorption
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We show the possibility to periodically modulate refractive index in a homogeneous resonant atomic medium
in space or/and time while simultaneously keeping vanishing absorption/gain. Such modulation is based on
periodic resonant enhancement of refractive index, controlled by an external optical field, and opens the way
to produce coherently controllable photonic structures. We suggest possible implementation of the proposed
scheme in rare-earth doped crystals with excited state absorption.
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One, two, or three dimensional periodic heterostruc-
tures made of two dielectric materials with different
refractive indexes, such as distributed Bragg reflectors
(DBR), holey fibers, or photonic crystals find many ap-
plications, including reflective coatings, distributed feed-
back lasers, and optical cavities. Different technolo-
gies such as photolithography, etching, drilling, and self-
assembling are used for construction of such structures.
We suggest a method to produce transparent photonic

structures in a homogeneous resonant atomic media, such
as dielectrics with homogeneously distributed impurities,
atomic, or molecular gases, simply by illuminating these
materials with standing waves of a laser field. Such op-
tically produced photonic structures could easily be con-
trolled (including switching on/off, changing amplitude
and period of modulation) and would be highly selective
in frequency, naturally limited by the width of the optical
resonance.
Refractive index (RI) is strongly enhanced near atomic

resonances. However, that enhancement is accompanied
by enhancement of absorption. Namely, when the max-
imal contribution from the atomic resonance to the RI
is reached, the contribution to the absorption is on the
same order which prevents the usage of obtained RI.
There have been several proposals on how to resonantly
enhance refractive index while at the same time elimi-
nating resonant absorption. One approach is based on
interference effects in multilevel atomic systems driven
by coherent resonant fields.1–5 Another suggestion is to
compensate absorption with resonant gain from an in-
verted transition.6 Such a situation could be realized ei-
ther in a mixture of two two-level atomic species, or in
a single atomic species possessing simultaneously both
noninverted and inverted transitions with slightly shifted
frequencies.7 Proof of principle experiments were done in
hot Rb vapors in which enhancement of refractive index
∆n ∼ 10−4 was achieved under negligible absorption.8,9

An enhancement up to the value ∆n ∼ 10−2 is expected
with an increase of density to N = 6 · 1016cm−3. The
further increase of refractive index in room-temperature
gases is not feasible due collisional broadening becom-
ing the dominant contribution to the linewidth. Much
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higher resonant additions to the background index are
anticipated in transition element doped crystals due to
the essentially higher density of the ions which does not
in general result in proportional line broadening.7,10,11

In all of these proposals the RI was uniform in space.
Moreover, an enhancement of the RI with vanishing res-
onant absorption was achieved only at a particular de-
tuning of the probe field from atomic resonance and was
accompanied by either absorption or gain at the neigh-
boring detunings. Thus, none of those proposals was
suitable for achieving spatial modulation of refractive in-
dex with zero absorption. Our proposal is based on spa-
tial modulation of the energy of a populated intermedi-
ate state in a nearly degenerate ladder configuration via
the ac-Stark effect in a standing wave field which results
in a spatially dependent detuning leading to a periodic
resonant increase and decrease of the refractive index in
space while simultaneously keeping transparency of the
medium.
Consider the interaction of a probe field with a medium

of three level atoms in a ladder configuration such that
the probe field interacts with both transitions as illus-
trated in the inset of Fig. 1. The transition frequencies
ω21 and ω32 are close to each other so that the probe
field with frequency ωp interacts simultaneously with
both transitions and for a weak probe Rabi frequency
Ωp << γ21, γ32 the susceptibility is defined as the sum of
the susceptibilities of two two-level transitions:

χ =
3Nλ3

8π2
[
γrad
21 (ρ1 − ρ2)

δ21 − iγ21
+

γrad
32 (ρ2 − ρ3)

δ32 − iγ32
]. (1)

Here N is the atomic density, the detunings are defined
as δ21 = ω21−ωp and δ32 = ω32−ωp, λ is the probe field
wavelength in the medium, γrad

ij is the radiative decay
rate for the i to j transition, γij is the total decoherence
rate, and ρi is the population in the ith energy level.
We assume that the amplitudes of both transitions are
matched but of opposite sign:

γrad
21 (ρ1 − ρ2) = −γrad

32 (ρ2 − ρ3). (2)

which means that one of the two transitions is inverted.
Let it be transition 2-1, i.e. ρ2 − ρ1 > 0. We also assume
the widths of the transitions are equal γ21 = γ32 and
the probe field is tuned to two photon resonance, i.e.
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FIG. 1. Real part of the susceptibility as a function of the
level shift δ. Note that the imaginary part is identically zero.
Inset: the energy level diagram for the corresponding three
level scheme.

0.5 1.0 1.5 2.0

z

Λs

-1.0

-0.5

0.5

1.0
Re Χ �Max Χ

FIG. 2. Real part of the susceptibility plotted as a function
of position along the optical axis.

ωp = ω31/2. Thus for arbitrary position of level 2 the
blue detuning of the probe field from one of two two-level
transitions is equal to the red detuning from the other,
i.e. δ32 = −δ21 = δ, leading to the remarkable property
that gain at one transition and absorption at another one
cancel each other while the real part of susceptibility is
doubled. So, the susceptibility is purely real:

χ =
3Nλ3γrad

21 (ρ1 − ρ2)

8π2

2δ

δ2 + γ2
21

. (3)

It means that the probe field neither experiences ab-
sorption nor gain independently of level 2’s energy, i.e.
for arbitrary values of δ. At the same time the resonant
susceptibility varies from the minimum to the maximum
value as δ is shifted from −γ to γ as shown in Fig. 1. If
the energy of the intermediate level is modulated in space
along the direction of propagation of the probe field, the
refractive index is also modulated. Such spatial mod-
ulation can be produced along the optical axis via the
ac-Stark shift. A control laser field Escos(ωst) applied
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FIG. 3. Imaginary part of the susceptibility for a probe field
detuned from resonance by γ21/20 (solid) and γ21 (dashed)
plotted as a function of position along the optical axis.

at the 0-2 transition adjacent to the 1-2 transition and
far detuned from this transition ∆s = ωs − ω20 >> γ20
would result in a splitting of the intermediate state 2 into
two ac-Stark sublevels shifted in frequency by −|Ωs|2/∆s

and ∆s + |Ωs|2/∆s, respectively, where Ωs is the associ-
ated Rabi frequency. The probe field is far out of reso-
nance with the transitions from the second Stark sublevel
from both level 1 and level 3 and, therefore its interac-
tion with these transitions is negligible while the first
Stark sublevel is slightly shifted from the original level
2 and strongly interacts with the probe field. In other
words, the susceptibility at each transition (2-1 or 2-3),
which in general consists of two terms associated with
the one-photon and two-photon resonances is reduced to
the one-photon contribution and has the same form as
given by Eq. (3), just with shifted transition frequencies.
If the control field represents itself as a standing wave

such that the Rabi frequency is a function of position
inside the medium, Ωs(z) = Ωscos(ksz), then the ac-
Stark shift of level 2 is given by:

∆E = − h̄|Ωs|2
2∆s

− h̄|Ωs|2
2∆s

cos(2ksz). (4)

Thus it consists of a constant shift, |Ωs|2/2∆s, and a si-
nusoidal modulation, (|Ωs|2/2∆s)cos(2ksz). If the differ-
ence between the atomic transition frequencies ω32−ω21

is chosen to be equal to −|Ωs|2/∆s then the susceptibility
is described by Eq. (3) with δ = (|Ωs|2/2∆s)cos(4πz/λs)
(where λs is the wavelength of the control field in the
medium). Hence the refractive index will be modulated
symmetrically with respect to its background value as
shown in Fig. 2. The spacial period λs/2 is defined by
the wavelength, while the modulation depth −|Ωs|2/∆s

is defined by the Rabi frequency of the modulating field
Ωs. To provide the maximum amplitude of refractive in-
dex modulation the Rabi frequency of the control field
should meet the condition Ω2

s = 2γ∆s.
With a strong enough index variation a transparent for

a particular frequency 1-D photonic crystal can be cre-
ated with properties that are optically controlled. Simi-
larly a 2-D or 3-D photonic structure can be produced by
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application of 2 or 3 orthogonal modulating control fields.
Even for index variations much smaller than the back-
ground RI the medium will behave as a distributed Bragg
reflector if λs ≃ λp specifically, when the wavelength
mismatch is within the width of the Bragg bandgap,
λs − λp < λs∆n/(πnbg). Since the medium remains
transparent, many periods of spatial RI structures can
be used as needed to achieve the required reflection co-
efficient.
When the probe field is detuned from two-photon reso-

nance with 1-3 transition it will experience either gain or
absorption. The question arises if such gain may result in
the building up of a spontaneously amplified field empty-
ing the inverted transition and limiting the propagation
length of the probe field in the medium with periodic re-
fractive index. Fortunately, this is not the case. Indeed,
since the position of the intermediate level is periodi-
cally modulated in space, then a detuned probe field ex-
periences periodically interchanging regions of gain and
absorption suppressing the development of such an in-
stability as can be seen in Fig. 3. In fact averaging the
absorption over a wavelength λs shows that the medium
is effectively transparent even when the probe field is de-
tuned from resonance.
The simple model of a ladder system previously dis-

cussed assumed the existence of two transitions pos-
sessing equal linewidths, equal products of transition
strength and population difference, and nearly degener-

ate (on the scale of the linewidth) frequencies. It is dif-
ficult if not impossible to meet these conditions in a real
atomic system. However, it is possible to construct an
effective ladder system whose upper transition has con-
trollable parameters which could be optically tuned to
satisfy these conditions.

It can be accomplished by adding to the original simple
ladder system along with the modulating control field Es

coupled to an adjacent transition 0-2 (as discussed above)
a second control field Ec coupling the excited state 3 to an
additional unpopulated level 4 as shown in Fig. 4. This
second far-detuned control field (∆c >> γrad

32 ,Ωc where
∆c = ω43−ωc and Ωc is the control field Rabi frequency)
is chosen to satisfy approximately the two-photon reso-
nance condition: ωc − ωp = ω42, forming together with
the probe field a far-detuned lambda scheme. A strong
far-detuned field results in an ac-Stark splitting of level 3
and the response to the probe field consists of two terms
representing one-photon (upper Stark sublevel) and two-
photon (lower Stark sublevel) contributions in the same
way as previously discussed. But now it is the two-photon
contribution which plays a dominant role due to the two-
photon resonance condition.7,12

As a result, the total five level system under the for-
mulated above conditions is reduced to an effective three-
level ladder system with the lower transition 1-2” and the
upper transition 2”-3’. Its susceptibility takes the form:

χres =
3Nλ3

8π2

{

γrad
21 p/(2− p)

δp +
Ω2

s

2∆s

+ δ − iγ21
+

ξγrad
32 /[(2− p)(1 + 2ξ)]

δp − ω32 + ω21 − Ω2
s

2∆s

− δ +∆c(1 + ξ − ξ2)− i[γ42(1− ξ) + γ32ξ]

}

. (5)

Where we assume incoherent pumping (not shown in
Fig. 4) which provides the necessary population inver-
sion, represented by the pumping factor p = (ρ2−ρ1)/ρ2.
We also assume level 3 is empty and introduce a control
field parameter ξ = |Ωc|2/∆2

c , as well as the one photon
detuning δp = ω21 − ωp. Now the parameters of the ef-
fective upper 2”-3’ and lower 1-2” transitions defined by
the control fields can easily be matched.
We choose Ωs =

√
2γ21∆s to provide the maximum

range of refractive index modulation. Matching the
linewidth of 3’-2” transition to that of 2”-1 defines the
control field parameter ξ:

ξ =
γ21 − γ42
γ32 − γ42

. (6)

It implies a larger linewidth of the upper 2”-3’ transition
as compared to the lower transition 1-2”, γ32 > γ21, and
relatively slow decay of the coherence at the 4-2” tran-
sition: γ42 < γ32, γ21. Matching the amplitudes defines
the pump parameter as:

p =
γrad
32

γrad
21

ξ

1 + 2ξ
. (7)

We take the probe field to be resonant with the dressed
transition 2”-1 such that δp = −Ω2

s/2∆s. Then match-
ing the frequencies of the transitions defines the required
detuning of the control field ∆c:

∆c =
ω32 − ω21 + 2γ21

1 + ξ − ξ2
. (8)

This implies that ∆c will be on the same order as
ω32 − ω21. Since |Ωc| =

√
ξ∆c and ∆c ≈ ω32 − ω21,

it is important to have 1-2 and 2-3 transitions with close
frequencies in order to reduce the required control field
intensity. Under the above conditions the susceptibility
given by Eq. (5) takes the same form as in Eq. (3). Thus,
it becomes possible to realize resonant modulation of re-
fractive index with zero absorption/gain in the realistic
system.
As an example we consider Er3+:YAG (nbg = 1.82)

where the 4I9/2 to 4I15/2 (γrad
21 = 45Hz) transition

at 813.2nm (transition 2-1 in Fig. 4) has a closely
matched excited state absorption transition (transition
2-3 in Fig. 4) from 4I9/2 to 4G9/2 (γrad

32 = 15Hz) with

ω32 − ω21 = 20GHz.13,14 Coherent driving of the transi-
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FIG. 4. Energy level diagram for the 5-level system coupled
with two control fields Ωs and Ωc leading in ac-Stark splitting
of levels 2 and 3 and resulting in an effective ladder system
1-2”-3’ in the dressed state basis.
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FIG. 5. Real (dashed) and imaginary (solid) part of the sus-
ceptibility as a function of distance along the optical axis
for implementation of a optically controlled distributed Bragg
grating in Er3+:YAG with the parameters listed in the paper.

tion between the next Stark level of the ground state and
4I9/2 level (transition 2-0 in Fig. 4) can be used for modu-

lation of level 2 position, while coherent driving of 4I15/2
and 4G9/2 can be used for matching of the parameters
of the upper and lower transitions in the effective ladder
system. Taking N = 1.4 ·1021cm−3 and low enough tem-
perature to limit phonon broadening we assume γ32 =
0.8GHz, γ21 = 0.3GHz, and γ42 = 0.2GHz. Choosing
pump parameter p = 0.035 and the following parame-
ters of the driving fields: Ωs = 2.45GHz, ∆s = 10GHz,
Ωc = 7.449GHz, and ∆c = 17.893GHz, we obtain 3.3%
refractive index modulation with respect to background
value (∆χ′ = 0.22) with a periodically modulated practi-
cally vanishing absorption (max |χ′′| < 0.0033) as shown

in Fig. 5. This result follows from the numerical analy-
sis of the 5 level system driven with two coherent fields,
and is well approximated by the analytical formula in
Eq. (5). We note that the chosen wavelength mismatch,
λs − λp = 1.45nm, is much smaller than the width of
the Bragg bandgap, λ∆n/(πnbg), which in our case is
equal to 8nm. Already a relatively thin medium with
L = 100µm (which corresponds to 245 periods of mod-
ulation) provides quite high reflection coefficient, R =
0.99998. As the probe field is detuned from atomic reso-
nance there will be absorption/gain which alternates on
the scale of the wavelength as shown in Fig. 3, resulting in
zero net absorption/gain. The produced DBR has a very
narrow bandwidth of 0.6GHz (defined by the linewidth
of atomic resonance) and may be used as a frequency
selective reflector.
In conclusion, we proposed a method to produce pe-

riodic modulation of the refractive index while keeping
zero net absorption/gain. The method is based on spatial
modulation of the energy of the populated intermediate
state in effective three level system with matched tran-
sition properties by an external strong control field via
the ac-Stark effect. Possible implementation of this tech-
nique in Er3+:YAG is suggested, where a 3% modulation
of refractive index with vanishing absorption is possible.
The proposed method may find useful applications for
the creation of optically controllable photonic structures
such as distributed Bragg reflectors, holey fibers, pho-
tonic crystals, etc. A major advantage of these struc-
tures as compared to traditional photonic structures is
that they can be easily manipulated (including switching
on/off, changing the amplitude and period of modula-
tion) by varying the parameters of the optical control
fields.
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