Magnetic-Field-Induced Enhancements of Nuclear Spin-Lattice Relaxation Rates in the Heavy-Fermion Superconductor CeCoIn$_5$ Using 59Co Nuclear Magnetic Resonance

H. Sakai, S. E. Brown, S.-H. Baek, F. Ronning, E. D. Bauer, and J. D. Thompson

Phys. Rev. Lett. 107, 137001 — Published 19 September 2011
DOI: 10.1103/PhysRevLett.107.137001
Among heavy-fermion systems, there is a growing number of examples of the emergence of unconventional superconductivity near a magnetic-nonmagnetic boundary tuned toward a zero temperature (quantum) critical point (QCP), raising the possibility of a connection between these phenomena [1]. In particular, the CeTh$_5$ (T=Co, Rh, Ir) materials, the so-called Ce115 family, have served as instructive examples by motivating the need to understand phenomena around an antiferromagnetic (AFM) QCP, including the observation of non-Fermi liquid (NFL) behavior, and their relationship to superconductivity [2]. CeCoIn$_5$ is a d-wave heavy-fermion superconductor with $T_c = 2.3$ K [3], and is thought to be located at the slightly positive pressure side of an AFM QCP at zero magnetic field [4]. Indeed, slight Cd-substitutions for In, which act as a negative chemical pressure in CeCoIn$_5$, induces long-range AFM order [5]. One of the several intriguing properties of CeCoIn$_5$ is the discovery of the “Q phase” at low temperatures just below the first-order upper critical field H_{c2} boundary in the a-b plane [6, 7]. Though possibly reflecting the emergence of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [6], the “Q phase” supports incommensurate spin density wave order that coexists spatially with superconductivity [8].

Another important finding is a possible QCP induced by a magnetic field applied along tetragonal c-axis. Although several phase diagrams have been proposed on the basis of resistivity [9–12], specific heat [13], linear thermal expansion [14], and volume thermal expansion [15] measurements, a common feature of these proposals is that an extrapolation of the normal-state boundary between Fermi-liquid (FL) and NFL behaviors to $T \to 0$ intersects the field axis near $H_{c2}(T \to 0) = 49.5$ kOe. The cyclotron mass, determined by de Haas-van Alphen experiments, also is enhanced at $H_{c2}(0)$ [16]. Because these macroscopic physical properties do not probe spin-dynamics directly, the relationship of the field-induced critical behavior to magnetic fluctuations has not been established. In the case that there is an association with spin dynamics, nuclear magnetic resonance (NMR) relaxation provides a direct probe of their role as a consequence of the hyperfine coupling. In this Letter, we report on the (H_0, T)-dependences of the nuclear relax-ation rate $(1/T_1)$ and Knight shift (K) for 59Co in the normal state of CeCoIn$_5$. A critical increase of $1/T_1$ for 59Co NMR is observed at fields $H_0 \sim H_{c2}(0)$, for $H_0 \parallel c$. As will be shown, $1/T_1(H_0, T)$ can be understood consistently as arising from 2D-AFM spin-fluctuations (SF), and provide microscopic evidence for a 2D-AFM instability near $H_{c2}(0)$.

A plate-like single crystal ($\sim 2 \times 1 \times 0.3$ mm3) of CeCoIn$_5$ was used for 59Co NMR measurements. Alignment of the crystal relative to the applied field H_0 was checked by nuclear quadrupole splittings of the 59Co (nuclear spin 7/2) NMR spectrum. Measurements of K and $1/T_1$ were performed by scanning temperature, using the central transition $(1/2 \leftrightarrow -1/2)$ under several applied fields above $H_{c2}(0)$. CeCoIn$_5$ has a tetragonal (HoCoGa$_5$-type) layered structure, which can be thought of as layers of CeIn$_3$ separated by layers of CoIn$_2$ along the c axis. Crystallographically, the Co sites are unique in this structure.

The temperature dependences of $(T_1 T)^{-1}$ and K for 59Co NMR are shown in Fig. 1. There is a very prominent low-temperature enhancement of $(T_1 T)^{-1}$ along the c axis near $H_{c2}(0)$, although the corresponding increase of K along c is not observed near $H_{c2}(0)$. This enhancement of $(T_1 T)^{-1}$ suggests strong AFM SF, of which quantitative analyses provide an insight into the criticality near $H_{c2}(0)$, as presented later. At all fields, $(T_1 T)^{-1}$ monotonically increases on cooling over the temperature range, $T < 100$ K. At the lowest temperatures, $(T_1 T)^{-1}$ crosses over to a saturation regime, with the crossover increasing in temperature at higher fields. In the case of $H_0 = 50$ kOe, which is nearest to $H_{c2}(0)$, the saturation is only...
seen below ~ 150 mK. The saturated behavior in K and $(T_1 T)^{-1}$ is consistent with the FL behavior as observed in the macroscopic physical quantities. A tiny increase of K_s with approaching field to $H_0(0)$ is seen below ~ 1 K, which comes from a small increase of spin polarization given by the magnetization along the c axis [7].

In order to extract quantitative information, as well as a context for comparing to previously reported measurements, we analyze the data within the framework of the spin fluctuation theory. For that purpose, we assume a single dynamical susceptibility is relevant near to the QCP. Then, $(T_1 T)^{-1}$ is written as

$$(T_1 T)^{-1} = \frac{k_B}{(\gamma_n h)^2} \cdot 2(\gamma_n A_{1\perp})^2 \sum_q f_{1\perp}(q) \frac{\text{Im} \chi_{1\perp}(q, \omega_0)}{\omega_0},$$

where γ_n and γ_e are the nuclear and electronic gyromagnetic ratios, $A_{1\perp}$ is the transferred hyperfine coupling constant, $f_1(q)$ is the hyperfine form factor, $\text{Im} \chi_{1\perp}(q, \omega_0)$ is the imaginary part of the dynamical susceptibility, ω_0 is the nuclear Larmor frequency and the suffix \perp the nuclear $Larmor$ frequency and the suffix A the Co site and has no anisotropy with respect to the a and c axes. Therefore, $f^2(q)$ does not affect the sensitivity to strictly two dimensional (2D) AFM SF.

First, let us consider a mean-field approximation. Within a random-phase approximation (RPA), the dynamical susceptibility for weakly correlated quasi-particles can be simplified as $\chi_{RPA}(q, \omega) = \chi_0(q, \omega)/(1 - \alpha_q [\chi_0(q, \omega)/\chi_0(Q, \omega)])$, where $\chi_0(q, \omega)$ is the dynamical susceptibility of noninteracting quasi-particles and α_q is an enhancement factor. $\chi_0(q, \omega)$ gives the well-known Korringa relation $T_1 TK_{q}^{2} = (\hbar / 4\pi K_B)(\gamma_n / \gamma_0)^2 \equiv S$, with K_s being the spin part of K. Using $K_s \propto (1 - \alpha_q)^{-1}$, the modified Korringa relation for $\chi_{RPA}(q, \omega)$ is obtained as $T_1TK_{q}^{2} = nSK(\alpha_q)^{-1}$, with $K(\alpha_q) \equiv (1 - \alpha_q)^2(1 - \alpha_q(\chi_0(q)/\chi_0(0)))^{-2}$ where $n = 2$ is the number of nearest magnetic atoms, and $(\cdot \cdot \cdot)$ means an average over the Fermi surface [19]. To deduce the $4f$ electronic component, non-interactive electronic and lattice terms are subtracted by the value of $(T_1 T)^{-1}$ for LaCoIn$_5$ [17]. Since $(T_1 T)^{-1}$ responds to the perpendicular component of SF from Eq. (1), the respective dynamical susceptibility of in-plane and out-of-plane can be obtained by a geometrical decomposition of $(T_1 T)^{-1}$ along a and c axes. Namely, the in-plane and out-of-plane components of $(T_1 T)^{-1}$ are obtained from $(T_1 T)^{-1}/2$ and $(T_1 T)^{-1} - (T_1 T)^{-1}/2$, respectively. K_s is estimated by subtracting $K_{0, i}$ [18]. At 50 kOe, from this modified Korringa relation, the in-plane component of $K(\alpha_q)$ is found to increase rapidly as $T \rightarrow 0$, and much larger than 1 at the lowest temperature. The out-of-plane component of $K(\alpha_q)$ is found to be nearly T-independent and close to 1. $K(\alpha_q) \gg 1$ for the in-plane component indicates AFM correlations at the lowest temperatures. The observations are consistent with easy-plane AFM SF in the low temperatures. Here, the important finding from RPA is a remarkable T-dependence of in-plane $\chi(Q)$. In addition, an unusual H_0-dependence of in-plane $\chi(Q)$ is also indicated as well by $(T_1 T)^{-1}$ shown in Fig. 1.

In order to treat $\chi(Q)$ at finite temperature, couplings among the q-modes of SF should be considered in a self-consistent fashion, beyond RPA, considering a specific q-mode only. In such a framework, the dynamical susceptibility can be treated quantitatively by the self-consistent renormalization (SCR) theory [20–22], which has been applied successfully to characterize the nature of SF in many heavy-fermion materials [23, 24]. In the SCR model, the dynamical susceptibility is characterized by two energy scales, T_0 and T_A, which correspond to the magnetic fluctuation energy in ω- and q-spaces, respectively. The q dependence of the effective RKKY interaction J_Q is expressed as $J_Q = J_{Q+q} = 2T_A(|q|/|q_B|)^2$ around the AFM wave vector Q, where q_B is the zone-boundary vector. We consider the in-plane SF only in the SCR scheme, using the dimensionless inverse static susceptibility $y = (2T_A \chi(Q))^{-1}$. Here, the out-of-plane component is assumed to be negligibly small due to a weak correlation between planes. The dynamical susceptibility in the 2D-AFM case can be written as $(2T_A \chi(Q + q, \omega))^{-1} = y + (q/q_B)^2 - i\omega/(2\pi T_0)$. Then, the self-consistent equation for y is given using two more parameters $y_0 = (2T_A \chi(Q, 0))^{-1}$ and $y_1 = 2J_Q/(\pi^2 T_A)$.
(3D) AFM SCR scheme, in which it is proportional to temperature cannot be explained by a three-dimensional heat have been fitted to simulations based on terms and exchange interaction previously using a similar 2D SCR model [13], but parameters are not fits but are calculations scaled to the experimental data [14]. This good reproduction of the experimental data attests to the applicability of the 2D-AFM SCR model in CeCoIn5. Moreover, because the sharp decrease of \(\alpha \) below \(\sim 0.3 \) K for 80 kOe can be explained within the 2D-AFM scheme, there is no need to postulate a dimensional crossover from 3D to 2D [14]. A possible dimensional crossover also is excluded in recent measurement of volume thermal expansion [15]. Collectively, these results show that, as \(H_0 \) approaches \(H_{c2}(0) \) from above, the distance from the QCP \((y_0) \) becomes increasingly small \((y_0 = 0.04 \) for 80 kOe, 0.022 for 64 kOe) and is nearly zero \(y_0 = 0.008 \) (but still finite) at 50 kOe.

The SCR model also provides an estimate of the in-plane spin correlation length \(\xi/a \), which can be calculated in units of the in-plane lattice parameter \(a \) from \((1/\sqrt{\pi y})^{-1} \). As shown in Fig. 3(a), \(\xi/a \) at 50 kOe is \(\geq 3 \) at the lowest \(T \), while it is only \(\sim 1.4 \) at 80 kOe. In CeRhIn5, \(\xi/a \) is estimated to be \(\sim 5 \) just above the Néel temperature \(T_N \) = 3.8 K [25]. Similarly, Cd-doped CeCoIn5 induces long-range AFM order where \(\xi/a \sim 4 \) [26]. Therefore, \(\xi/a \) at 50 kOe, Fig. 3(a), indicates that CeCoIn5 is on the threshold of a long-range AFM ordering just near \(H_{c2}(T \to 0) \). Our estimate is close to the zero-field value of \(\xi/a \sim 2.1 \) extracted from inelastic neutron scattering (INS) experiments [27]. We note that a quasi-2D nature of SF is confirmed by the out-of-plane component of \(\zeta/a \sim 0.87 \) from INS, i.e., \(\zeta/a/\xi_a = 2.4/(c/a) \) with the lattice anisotropy of \(c/a \approx 1.6 \) in CeCoIn5. Pa-

\[y = y_0 + y_1 \int_0^x \left[\ln u - \frac{1}{2u} - \psi(u) \right] dx, \]
rameters derived from fits to the SCR model also give the characteristic spin fluctuation energy Γ_Q, computed from $2\pi T_0q_y$. As seen in Fig. 3(b), this Γ_Q agrees well with that obtained from INS [27]. Though Γ_Q shows no apparent field dependence above ~ 2 K, the energy scale of magnetic excitations decreases below ~ 2 K as H_0 approaches $H_{c2}(0)$. Therefore, our results provide evidence for an energy scale of low-lying magnetic excitations that is ~ 1 K in CeCoIn$_5$ and that a magnetic field finely tunes this scale to order ~ 0.1 K.

In conclusion, we have demonstrated from microscopic measurements that the field-induced QCP in CeCoIn$_5$, for $H_0 || c$, exists and that the driving force for this QCP is quasi-2D-AFM SF. Although these experiments are unable to determine if the QCP is located exactly at $H_{c2}(0)$, they are consistent with resistivity [12] and volume thermal expansion experiments [15] that locate the QCP just below $H_{c2}(0)$. The relationship of this QCP to the field-induced “H-I phase” (“Q phase”) for $H_0 || a$ remains an open question. At a minimum, a microscopic understanding of the “H-I phase” will need the presupposition of the existence of quasi-2D-AFM QCP, as considered in some theoretical models [28].

We thank Drs. R. Movshovich, R. R. Urbano, J. -P. Brison, H. Ikeda, T. Takimoto, Y. Tokunaga, S. Kambe and H. Yasuoka for stimulating discussions. H. S. and S. E. B. acknowledge the hospitality of Los Alamos National Laboratory. Work at LANL was performed under the auspices of the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and supported in part by the Los Alamos LDRD program. This work was also partly supported by the JSPS KAKENHI for Young Scientists (B) (No. 21750067), and the REIMEI Research Program of JAEAF. S. E. B. acknowledges partial support by the National Science Foundation under grant no. DMR-0804625.

FIG. 3. Temperature dependence of (a) magnetic correlation length ξ/a and (b) spin fluctuation energy Γ_Q derived from an SCR analysis of CeCoIn$_5$ at 50 kOe, 64 kOe, and 80 kOe. The broken line in (a) indicates an estimate from inelastic neutron scattering (INS) at zero field. The closed circles in (b) are $T(0)$. Therefore, our results provide evidence for an energy scale of low-lying magnetic excitations that is ~ 1 K in CeCoIn$_5$ and that a magnetic field finely tunes this scale to order ~ 0.1 K.

