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The paired state of composite fermions is expected to support two kinds of excitations: vortices
and unpaired composite fermions. We construct an explicit microscopic description of the unpaired
composite fermions, which we demonstrate to be accurate for a 3-body model interaction, and,
possibly, adiabatically connected to the Coulomb solution. This understanding reveals that an
unpaired composite fermion carries with it a charge-neutral “topological” exciton, which, in turn,
helps provide microscopic insight into the origin of zero modes, fusion rules, and energetics.
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Should composite fermions (CFs) form a p-wave paired
state, as has been proposed1,2 for the mechanism of the
fractional quantum Hall effect (FQHE) at 5/2, analogy to
superconductivity leads one to expect two kinds of excita-
tions: vortices and unpaired CFs3 (UCFs). A number of
their properties, predicted by the Bogoliubov-de Gennes
treatment or conformal field theory,1,4,5 have been con-
firmed for excitations that are exact zero energy solutions
of a model 3-body Hamiltonian H3 (defined below), such
as the quasihole vortices. The situation is less clear for
other states, e.g. quasiparticle vortices and UCFs, as
well as for the Coulomb interaction for which no accu-
rate wave functions exist. Möller, Wójs and Cooper6 and
Bonderson, Feiguin and Nayak7 have studied the UCF
by exact diagonalization by considering states with an
odd number (N) of composite fermions, which necessarily
contain a composite fermion without a partner. This Let-
ter presents a microscopic description of the UCF which
reveals that the UCF carries with it what Hansson has
termed a “topological”-exciton.8,9 That, in turn, yields a
number of remarkable and physically transparent conse-
quences for energetics, such as even-odd oscillations and
zero modes,6,7,10 as well as fusion rules.1,4,5 We present
evidence that the microscopic description below is ex-
ceedingly accurate for H3, and that its essential features
carry over adiabatically to the Coulomb solutions.
We consider the following ansatz for the UCF state:

ΨUCF = A φCF({zj}) χ
CF({wk})

M+1∏

j=1

M∏

k=1

(zj − wk)

where the N = 2M + 1 composite fermions have
been divided into two partitions, {z1, z2, · · · zM+1}
and {w1, w2, · · ·wM}, occupying states φCF({zj}) and
χCF({wk}), and the last term represents correlations be-
tween composite fermions in different partitions. The
symbol A indicates antisymmetrization with respect to
exchange of any two particles. Let us define the largest
exponent of zj in φ as 2Qφ and the largest exponent
of wk in χ as 2Qχ, which are analogous to the flux
(measured in units of the flux quantum φ0 = hc/e)
in the spherical geometry for φ and χ. Because the
net flux must be the same for all particles, we have

FIG. 1: (color online) Schematic depiction of (a) the unpaired
composite fermion with topological exciton; (b) ordinary ex-
citon. The composite fermions are shown as dots decorated
with arrows, representing bound states of electrons and vor-
tices. The left and right parts show the Λ level diagrams for
composite fermions in the two partitions. The single CF in
the otherwise empty Λ level is called a (CF-)quasiparticle and
the missing CF a (CF-)quasihole, which, for the present case,
have charge excess or deficiency of magnitude e/4 relative to
the uniform ground state.

2Q = 2Qφ+M = 2Qχ+M+1 including the contribution
from the cross factor. At 2Q = 2N − 3, the flux value
relevant for the 5/2 state, φ is the 1/3 state with a quasi-
particle and χ is the 1/3 state with a quasihole (Fig. 1a).
The unpaired CF state thus carries a charge-neutral ex-
citon. This “topological” exciton is to be distinguished
from the “ordinary” exciton (Fig. 1b) that contains a
quasiparticle-quasihole pair within one partition; unlike
in the ordinary exciton, the quasiparticle and the quasi-
hole in the topological exciton cannot annihilate one an-
other – they are part of the ground state continuum at
odd N . Different placements of the quasiparticle and the
quasihole (Fig. 1a) generate a basis for UCF states.
The form of ΨUCF is naturally motivated by the

observation2 that the Pfaffian wave function for even N
can be written as the fully antizymmetrized “331” bilayer
wave function of Halperin.11 The conformal field theory
construction of topological exciton by Hansson8,9 is sim-
ilar in spirit. These wave functions can be extended12 by
starting with the more general bilayer wave functions of
Scarola and Jain.13 Wave functions of this form have also
been motivated by Hermanns14 and by Milovanović and
Jolicœur15 in a conformal field theory approach.
The ansatz ΨUCF signifies definite predictions, with no

free parameters, for the quantum numbers of the low
energy states, their wave functions, and their energies,
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FIG. 2: (color online) Exact spectra (dots) for several particle
numbers N at total flux 2Q = 2N − 3 for the 3-body interac-
tion (a–d), for the Coulomb interaction in the 2nd LL (e–h),
and for Coulomb interaction in the lowest LL (i–l). L is the
orbital angular momentum and λ is the magnetic length. The
fractional numbers near dots are overlaps with ΨUCF (which
contains no adjustable parameters) in (a-c) and (e-g). The
red dashes are the energies of ΨUCF, not shown when they
fall outside the frame (as in (g)). In (h) we show overlaps
with the 3-body eigenstates; their Coulomb energies all fall
outside the frame. The total number of linearly independent
states in each L sector is shown in brackets in (a-d), and
“dim” indicates the dimension of the Lz = 1/2 basis used in
exact diagonalization.

through which the theory opens itself to rigorous tests
against exact results known for finite systems. The calcu-
lations below are performed in the spherical geometry in
which the N electrons move on the surface of the sphere
under the influence of a radial magnetic field. The total
flux through this spherical surface is 2Qhc/e. The wave
functions ΨUCF can be translated into the spherical ge-
ometry using standard methods. For the quasiparticle,
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FIG. 3: (color online) Adiabatic evolution of the energy gap
∆(x) at each relevant value of L (defined as the separation
between the two lowest eigenvalues at that L) as the interac-
tion is varied from 3-body to 2nd LL Coulomb. The evolution
hamiltonian is H(x) = (1− x)H3/ε3 + xHC/εC in which the
energy scales ε3 and εC are taken as the ordinary exciton
energies at large wave vector.

Jain’s wave function has been used.16,17 The model 3-
body interaction2 is given by H3 =

∑
i<j<k P

(3)
ijk (3Q−3),

where P
(3)
ijk (L) projects the state of the three particles

(i, j, k) into the subspace of total orbital angular momen-
tum L; the interaction penalizes the smallest approach of
three particles. We find it convenient to express the UCF
wave function in each angular momentum sector as a lin-
ear combination of exact eigenstates, ψi

exact, of either H3

or HC in the same sector: ΨUCF =
∑

i ciψ
i
exact. By con-

sidering sufficiently many N -particle configurations, we
obtain a system of linear equations that can be solved to
obtain ci. The energies and overlaps of ΨUCF are then
evaluated straightforwardly.18

The angular momentum of the CF-quasiparticle in φCF

is (N + 1)/4 and the angular momentum of the CF-
quasihole in χCF is (N − 1)/4, which gives the allowed
angular momenta for their combination as L = 1/2, · · · ,
N/2. It turns out, remarkably, that the state at L = 1/2
is exactly annihilated19 upon antisymmetrization, thus
leaving the UCF states at L = 3/2, 5/2, · · · , N/2. The
annihilation of the state at the smallest L is analogous
to the annihilation of the L = 1 CF exciton of the FQHE
states at ν = n/(2n± 1), as noted by Dev and Jain.20

The exact 3-body spectra (dots) are shown in the four
upper panels (a)–(d) of Fig. 2 for severalN . A low energy
branch of states (blue dots) is seen to be well separated
from the continuum, and with the exception of L = 3/2,
the angular momenta of these states match nicely with
the predicted values. The 3-body energies of ΨUCF and
their overlaps with the corresponding exact eigenstates
are also shown. The excellent agreement establishes the
validity of ΨUCF for H3, with the exception of L = 3/2
where ΨUCF better describes an excited state; it should
be noted that L = 3/2 represents the quasiparticle and
quasihole at their shortest separation.

The exact spectra for HC are shown in panels (e)–(h)
of Fig. 2. These also contain a band of low-energy states
(blue dots) at L = 3/2, 5/2, · · · , N/2, which is less well
defined than the band for H3, but the lowest state is
well separated from the “continuum” at each L in this
range. Unlike for H3, the L = 3/2 state does not belong
in the continuum. The overlaps of the Coulomb eigen-
states with ΨUCF are moderate; this is to be expected
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FIG. 4: (color online) Panel (a): Evolution of the low energy
spectrum of N = 13 electrons with the hamiltonian H(x) of
Fig. 3. Both constituents H3 and HC are measured from the
uniform ground state energy (interpolated to an odd N). Col-
ored lines with dots have been used for the angular momenta
of the UCF, and the dot diameters give the overlaps with the
corresponding 3-body eigenstate. Except for L = 3/2 (level
crossing at x ≈ 0.2), the UCF states at x = 0 appear adia-
batically connected to the corresponding Coulomb states at
x = 1. Panels (b–e): Blue open circles show 〈ΨC|H3|ΨC〉
for each 2nd LL Coulomb eigenstate ΨC as a function of its
eigenenergy EC, and the red dots show 〈Ψ3|HC|Ψ3〉 for each
3-body eigenstate Ψ3 as a function of its eigenenergy E3. The
encircled red and blue dots indicate that the lowest 3-body
state has the lowest 〈HC〉 and vice versa, supporting adiabatic
continuity; the red dots at L = 3/2 provide an exception.

because the overlap of the exact 5/2 Coulomb ground
state at even N with the Pfaffian wave function are also
of similar level, and there is no reason why ΨUCF should
do better than the Pfaffian wave function. We now ask if
the Coulomb eigenstates are adiabatically connected to
ΨUCF, as was argued to be the case by Storni, Morf and
Das Sarma21 for the Pfaffian ground state for even N .
We plot in Fig. 3 the evolution of the gap at each L as
we vary the interaction fromH3 toHC. The gap does not
close for L ≥ 5/2. There is an avoided level crossing at
L = 3/2, but, interestingly, the Coulomb state is seen to
be connected to the 3-body excited state that has largest
overlap with the UCF wave function. These results sug-
gest that the Coulomb eigenstates are adiabatically con-
nected to ΨUCF for all relevant L. Further evidence for
adiabatic continuity is presented in Fig. 4. We note that,
as for the Pfaffian state, the agreement improves slightly
(not shown) upon including finite thickness effects.
In contrast, the spectra for the lowest LL Coulomb

state, shown in panels (i)–(l) of Fig. 2, are consistent
with a system of weakly interacting composite fermions
experiencing an effective flux 2|Q∗| = 2|Q−N + 1| = 1.
In the topmost partially filled Λ level shell, we have: one
CF hole with single particle angular momentum l∗ = 5/2
for N = 11; one CF with l∗ = 7/2 for N = 13; three
CFs each with l∗ = 7/2 for N = 15; and three CF holes
each with l∗ = 7/2 for N = 17. The allowed L values can
be obtained from an elementary calculation, and match
precisely those seen in the exact spectra. The similarity
of the lowest bands for 15 and 17 particles is striking;
there is no symmetry in the electron problem which im-
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FIG. 5: (Color online) Density profiles of (a) the unpaired CF
state ΨUCF with N = 13, and (b) 3-body eigenstate (N = 19)
on sphere as a function of the polar angle θ. The density,
normalized to the filling factor, is measured relative to 1/2.
The different curves correspond to different L with Lz = L;
L = 3/2 is not shown in (b) because it falls into the contin-
uum. The distance between the constituent quasiparticle and
quasihole increases with L; they are both near the North Pole
(θ = 0) for L = 3/2 but at the opposite Poles for L = N/2.
Panels (c) and (d) show comparisons of the density profiles of
the topological exciton (with N = 19) and ordinary excitons
(N = 18) at the largest L = Lz = N/2 for 3-body and 2nd LL
Coulomb interactions; panels (e) and (f) show their energies
as a function of N . The dimension of the Lz = 1/2 configu-
ration space exceeds 107 million for N = 19 at 2Q = 35, the
largest so far for which H3 has been diagonalized.

plies this result, but it is explained rather naturally in the
CF theory, where the two states are related by particle
hole symmetry in the fourth Λ level. States with exci-
tations across one Λ level can also be identified in these
spectra as forming a well defined second band. Clearly,
the structure of the low energy states in the lowest LL is
qualitatively distinct from that for H3.
The above description of the UCF gives natural insight

into many properties of the 5/2 state:
Odd-even parity effect: The presence of the topological

exciton at odd N causes O(1) oscillations in energy as a
function of N , as found by Lu, Das Sarma and Park,10

with the energy difference between odd and evenN being
equal to the minimum energy of the topological exciton.
Ordinary vs. topological exciton: A nontrivial outcome

is that in the large wave vector limit (namely the large
L limit in the spherical geometry), the UCF and ordi-
nary neutral exciton have the same energy because, in
this limit, the constituent quasiparticle and quasiholes
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are far separated and their energy does not depend on
whether they reside in the same or different partitions.
(The energy must be defined properly relative to the uni-
form ground state, which for odd N is to be obtained by
interpolation.) For H3 this has already been noted in
exact diagonalization studies.6 For HC the finite size ef-
fects are stronger, but Fig. 5 convincingly demonstrates
that the two exciton energies at large L converge with
increasing N . At short distances (small L), on the other
hand, the energies of the ordinary and topological ex-
citons are not equal. Further, the ordinary CF exciton
is known to display a complex dispersion, possibly with
several “roton” minima, resulting from a complex inter-
play between the density profiles of the quasihole and
the quasiparticle as a function of their separation.20,22–24

Similar behavior can be expected for the topological ex-
citon, the constituents of which also have complicated
density profiles (Fig. 5), and indeed, the dispersions in
Fig. 2 or previous studies6,7 do exhibit minima. The min-
imum energy of the UCF will thus be lower than its large
L limit, as indicated by numerical studies.7 The location
of the minimum depends on the form of the interaction,
and will in general occur at different L for H3 and HC.

7

As noted in Ref. 6, observation of the topological exciton
will require a probe that changesN by one unit; standard
light scattering, which does not alter N , will excite the
ordinary exciton for states with even or odd N , which
differ only by a single localized topological exciton.
Fusion rules: Using the standard terminology of the

Ising conformal field theory,5 we identify the UCF by ψ
and the vortex (a quasiparticle or a quasihole in one par-
tition) by σ. The relation σ× σ = 1+ψ indicates that a
quasihole and a quasiparticle can be combined to produce
two kinds of excitations, by placing them in the same or
different partitions. The former, labeled “1,” produces
an ordinary exciton all of whose quantum numbers are
zero, whereas the latter, labeled “ψ,” produces a UCF.
The relation σ × ψ = σ captures the reaction in which
the addition of a quasiparticle or a quasihole to the UCF

state annihilates half of the UCF to leave a single quasi-
particle or quasihole. Finally, ψ×ψ = 1 encapsulates the
fact that two UCFs make two ordinary excitons. In all
cases above, we have considered the lowest energy out-
comes only. The fusion relations in the presence of several
quasiparticles or quasiholes can similarly be derived.

Zero modes: A nontrivial prediction of the px ± ipy
pairing scenario is the existence of a degenerate subspace
of states for quasiparticles or quasiholes that differ in
fermion number. Möller, Wójs and Cooper6 have shown
that the average energies of a system with two quasiholes
or quasiparticles are very close, modulo finite size uncer-
tainties, with and without a UCF (i.e., for even or odd
N). To see what insight the present work contributes,
consider a state at even N with 2n quasiholes, n in each
partition. Adding a UCF produces an “imbalanced” sys-
tem with n+1 and n−1 quasiholes in the two partitions,
because the quasiparticle of the topological exciton anni-
hilates one of the quasiholes. This allows the immediate
conclusion that provided the quasiholes are far apart, the
energy both before and after is simply 2n times the self
energy of an isolated quasihole. The same holds for a
collection of quasiparticles.

One may question if these conclusions, which rely on
the validity of ΨUCF, apply to the solutions ofHC . In this
context, it is important to note that the above analysis
does not depend on the details of the wave functions but
only on the structure of the theory for the quasiparticles,
quasiholes and the UCF. To the extent this structure con-
tinues adiabatically to HC , the conclusions should carry
over, and should also be robust to weak corrections aris-
ing from finite width and Landau level mixing.
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