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We develop the theory of light propagation under the conditions of electromagnetically induced
transparency (EIT) in systems involving strongly interacting Rydberg states. Taking into account
the quantum nature and the spatial propagation of light, we analyze interactions involving few-
photon pulses. We show that this system can be used for the generation of nonclassical states of light
including trains of single photons with an avoided volume between them, for implementing photon-
photon gates, as well as for studying many-body phenomena with strongly correlated photons.
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The phenomenon of electromagnetically induced trans-
parency (EIT) [1] in systems involving Rydberg states
[2] has recently attracted significant experimental [3–10]
and theoretical [11–21] attention. While EIT allows for
strong atom-light interactions without absorption, Ryd-
berg states provide strong long-range atom-atom inter-
actions. Therefore, the resulting combination of EIT
with Rydberg atoms is ideal for implementing mesoscopic
quantum gates [2, 16] and for inducing strong photon-
photon interactions, with applications to photonic quan-
tum information processing [2, 11–14, 19–22] and to the
realization of many-body phenomena with strongly inter-
acting photons [23]. At the same time, the many-body
theoretical description of EIT with arbitrarily strongly
interacting Rydberg atoms, taking into account the full
quantum dynamics and the spatial propagation of light,
has not been reported previously.

In this Letter, we develop such a theory by analyzing
the problem for at most two incident photons, which, in
turn, provides intuition for understanding the full multi-
photon problem. We show that Rydberg atom interac-
tions induce photon-photon interactions, which, below
a critical inter-photonic distance, turn the EIT medium
into an effective two-level medium. This can be used to
implement photon-atom and photon-photon phase gates
and to enable deterministic single-photon sources. Fur-
thermore, our novel non-perturbative analysis reveals a
possibility of photons behaving as “hard-sphere” objects
with strong anti-correlations characterized by an avoided
volume, which could lead to a number of interesting
many-body phenomena.

The basic physics is illustrated by a simple case [Fig.
1(b)], in which a single-photon wavepacket E propagates
in an EIT medium [level scheme in Fig. 1(a)] with a cen-
tral control atom at z = 0 prepared in a Rydberg state
|r′〉. Atoms in another Rydberg state |r〉, coupled by the
EIT control laser [Fig. 1(a)], experience a van der Waals
potential V (z) = C6/z

6 due to the interaction with the
control atom, which is decoupled from the applied fields.

Far away from z = 0, the incident photon propagates
in a standard EIT medium. This medium features a con-
trol field with single-photon detuning ∆ and Rabi fre-
quency Ω, which creates a frequency window, in which
the incident photon propagates with negligible absorp-
tion, near-unity refractive index, and reduced group ve-
locity vg [1, 24]. In the vicinity of z = 0, however, the
state |r〉 is shifted so strongly out of resonance that the
photon sees only a two-level (|g〉, |e〉) medium with tran-
sition linewidth 2γ. As we will derive below, the critical
z, at which the interaction is equal to the EIT linewidth
Ω2/|γ + i∆| [1], separates these two regimes and corre-
sponds to the Rydberg blockade radius [11, 25]. When
∆ = 0, the resonant blockade radius zb is thus defined
by V (zb) = Ω2/γ (~ = 1), while for ∆ � γ, we define
the off-resonant blockade radius zB via V (zB) = Ω2/∆
(we assumed ∆/C6 > 0). The propagation becomes a
one-dimensional problem (see Ref. [26] for 3D effects) if
the transverse extent of the photon is smaller than zb(B),
which can be satisfied via tight focussing or by using
waveguides [27–30]. Since the blockade region extends
over 2zb(B) [Fig. 1(b)], the presence of the control atom
locally creates an absorbing or refractive medium with
optical depth db(B) = 2dzb(B)/L, where d is the resonant
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FIG. 1. (a) EIT level scheme, in which a ground state |g〉 (the
initial state of each atom), an excited state |e〉, and a Rydberg
state |r〉 are coupled by a quantum probe field E and a clas-
sical control field with Rabi frequency Ω and single-photon
detuning ∆. (b) Interaction of one photon with a Rydberg
excitation stored at z = 0, which modifies the propagation
within the blockade region |z| < zb(B). (c,d) Interaction of
two counter-propagating (c) or co-propagating (d) photons.
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optical depth of the |g〉-|e〉 medium (Ω = 0) of length
L. Interesting effects occur at large blockaded optical
depths db(B). On resonance, assuming db � 1, the |r′〉
atom causes complete scattering of the incoming photon.
Off resonance, for dB � 1 and dB(γ/∆)2 � 1, the |r′〉
atom imprints a phase ∼ dBγ/∆ on the probe photon
and reduces its group delay by ∼ dBγ/Ω

2, as its group
velocity is increased to the speed of light, c, within the
blockade region.

In the off-resonant case, this simple system has di-
rect practical applications. First, by encoding a qubit
in the ground and |r′〉 states of the central control atom,
one can implement a phase gate between the probe pho-
ton and the atom. Second, the protocol of Ref. [31] al-
lows to implement a phase gate between two photons
by successively sending them past the control atom that
is appropriately prepared and manipulated between the
passes. Selective manipulation of the control atom can be
achieved particularly simply if it is of a different species
or isotope. Third, a phase gate between two photons can
also be achieved by storing one of them in the |r′〉 state of
the control atom and sending the other one through the
medium. While storing a photon in a single atom is dif-
ficult, the same effect can be achieved by storing [24, 32]
the photon in a collective |r′〉 excitation (see below).

The results of this simple problem can be extended to
the case of multi-photon EIT propagation in Rydberg
media. First, off-resonance, two counter-propagating
photons [Fig. 1(c)] can pick up a phase ∼ dBγ/∆, en-
abling the implementation of a two-photon phase gate
[12, 14]. Second, a pulse of co-propagating photons [Fig.
1(d)] will evolve into a non-classical state corresponding
to a train of single photons [19] and exhibiting correla-
tions similar to those of hard-sphere particles with radius
zb(B)/2. These correlations arise from scattering of pho-
ton pairs within the blockade region. Third, in the regime
where zb is larger than the EIT-compressed pulse length,
σ, both co- and counter-propagating resonant setups are
usable as single-photon sources since all but one excita-
tion will be extinguished. In the following, we present a
detailed theoretical analysis of these phenomena.

Interaction of a photon with a stationary excitation.—
We begin by detailing the solution of the problem of a sin-
gle photon with wavevector k propagating in a medium
where state |r〉 experiences a potential V (z) [Fig. 1(b)].
Treating the medium in a one-dimensional continuum ap-
proximation, working in the dipole and rotating-wave ap-
proximations, and adiabatically eliminating the polariza-
tion on the |g〉−|e〉 transition, the slowly varying electric
field amplitude E of the single-photon wavepacket and the
polarization S on the |g〉 − |r〉 transition obey [24, 32]

(∂t + c∂z)E(z, t) = − g2nΓ E(z, t)− g
√
nΩ

Γ S(z, t), (1)

∂tS(z, t) = −iU(z, t)− Ω2

Γ S(z, t)− g
√
nΩ

Γ E(z, t). (2)

Here Γ = γ − i∆, U(z, t) = V (z)S(z, t), g is the atom-

field coupling constant, and n is the atomic density. We
have neglected the depletion of state |g〉 and the finite
lifetime of the Rydberg state |r〉, which is typically much
longer than the propagation times considered here [2].
Assuming that all atoms are in state |g〉 before the arrival
of the photon, Eqs. (1,2) can be solved to give

E
(
L
2 , t
)

=

∫ ∞
−∞

dωe
−iω(t−L

c )+i
k
2

∫ L
2

−L
2

dzχ(z,ω)
Ẽ
(
−L2 , ω

)
,(3)

where the susceptibility χ is

χ(z, ω) =
1

kL

dγ[ω − V (z)]

Ω2 − (∆ + iγ)[ω − V (z)]
(4)

and Ẽ (−L/2, ω) is the Fourier transform of the
wavepacket incident at z = −L/2. For small ω, the
medium becomes effectively two-level (i.e. Ω plays no
role) if V � Ω2/|∆ + iγ|, hence our definition of zb(B).

For narrowband pulses, we expand χ in ω and, assum-
ing ∆� γ and L� 2zB, reduce Eq. (3) to

E (L/2, t) ≈ E (−L/2, t− L′/vg) eiϕ−η, (5)

where vg ≈ cΩ2/(g2n) = 2Ω2L/(dγ) is the EIT group
velocity. In order to avoid the Raman resonance at
V + Ω2/∆ = 0, we assumed ∆/C6 > 0. Since the photon
travels at c within the blockade region, the group delay
comes from a reduced medium length L′ = L − 7

9πzB ≈
L − 2zB. Additionally, the emergence of a two-level
medium within |z| < zB gives an intensity attenuation of
e−2η with 2η = 5π

18 dB(γ/∆)2 ≈ dB(γ/∆)2 and a picked-
up phase of ϕ = −π6 dB(γ/∆) ≈ − 1

2dB(γ/∆). Thus, with
dB � 1 and a properly chosen ∆ � γ, one can get a
considerable phase and/or change in group delay with-
out significant absorption. For the same derivation on
resonance (∆ = 0), the main effect is an intensity atten-
uation of≈ exp(−db), as expected for a two-level medium
of length 2zb.

It is straightforward to extend our analysis to a de-
localized |r′〉 excitation, i.e. a spin wave, that is spread
over many atoms. Far off resonance, the effect of the
control atom is independent of its position, such that a
single control atom and a corresponding spin wave af-
fect the incident photon identically. On resonance, with
db � 1, the |r′〉 spin wave causes complete scattering of
the incoming photon.
Interaction of propagating photons.—We now consider

the problem of propagating photons interacting with each
other. Regarding E and S in Eqs. (1,2) as operators
with same-time commutation relations [E(z), E†(z′)] =
[S(z), S†(z′)] = δ(z − z′) [32] and taking U(z) =∫
dz′V (z−z′)S†(z′)S(z′)S(z), Eqs. (1,2) become Heisen-

berg operator equations [33] for the case of photons
co-propagating in a Rydberg EIT medium [Fig. 1(d)].
Alternatively, for the case of two counter-propagating
photons [Fig. 1(c)], we define operators E1(2) and S1(2)
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for the right- (left-)moving photon. For S1, U(z) =∫
dz′V (z − z′)S†2(z′)S2(z′)S1(z), and vice versa for S2.
Since the physics of two counter-propagating pho-

tons is similar to the spin-wave problem above,
we begin our analysis with this case [Fig. 1(c)].
Letting |ψ(t)〉 be the two-excitation wavefunction
[34], we define ee(z1, z2, t) = 〈0|E1(z1)E2(z2)|ψ(t)〉,
es(z1, z2, t) = 〈0|E1(z1)S2(z2)|ψ(t)〉, se(z1, z2, t) =
〈0|S1(z1)E2(z2)|ψ(t)〉, and ss(z1, z2, t) =
〈0|S1(z1)S2(z2)|ψ(t)〉. Eqs. (1,2) then yield a sys-
tem of equations for these four variables. Defining
es± = (es ± se)/2, one finds that es− is small and
does not significantly affect the dynamics. Dropping
es−, defining center-of-mass and relative coordinates
R = (z1 + z2)/2 and r = z1 − z2, and taking a Fourier
transform in time, one obtains c∂rv = M(r, ω)v, where
v = {ee(R, r, ω), es+(R, r, ω)} and

M(r, ω) =

[
iw2 −

g2n
Γ − g

√
nΩ

Γ

− g
√
nΩ

Γ iω − Ω2

Γ + ig2n[ω−V (r)]
2Ω2+iV (r)Γ−iωΓ

]
.(6)

R enters only through boundary conditions and is, thus,
not important in the present case. For narrowband
pulses, we can expand M(r, ω) ≈M0(r) +ωM1(r), with

M0 = − 1

Γ

[
g2n g

√
nΩ

g
√
nΩ Ω2 + g2nV

]
, (7a)

M1 = i

[ 1
2 0

0 1− 2g2nΩ2V2

Γ2V 2

]
. (7b)

Here we defined the effective potential V = ΓV/(ΓV −
i2Ω2). Outside (inside) the blockade region, V ≈
iΓV/(2Ω2) (V ≈ 1). For |r| � zb(B), the two pho-
tons propagate as dark-state polaritons [24], i.e. we have
es+/ee = −g√n/Ω, which is an eigenstate of M0 with
eigenvalue 0. Since g

√
n� Ω, the group velocity can be

read out from the last entry of M1, which gives twice the
EIT group velocity vg since the two polaritons propagate
towards each other. Within the blockade radius, where
V ≈ 1 and V/V ≈ 0, the polariton solution ceases to be
an eigenstate of M0, and Eq. (7b) predicts a speed up to
∼ c. Since the time ∼ zb(B)/c it takes to cross the block-
ade region is much less than the inverse width of the EIT
window, the dynamics is highly non-adiabatic (see below)
such that the main result of the interactions is a picked-
up factor of exp

[
−
∫
drg2nV(r)/(cΓ)

]
= exp(iϕ − η).

This is a generalization of the result of Refs. [12, 14]
(where V ∝ V ) beyond the perturbative regime.

On resonance, 2η ≈ db. Thus, analogously to the spin-
wave problem above, the entire EIT-compressed two-
particle wavefunction decays provided it fits inside the
medium and db � 1. The resulting state is a statistical
mixture of right- and left-moving excitations.

Off resonance, es+ picks up ϕ ≈ − π
21/66

γ
∆dB ≈ − γ

2∆dB

and η ≈ 5π
21/636

γ2

∆2 dB ≈ γ2

2∆2 dB. Additionally, the off-
diagonal terms in M0 result in a small admixture of the
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FIG. 2. (a)-(d) Two-photon counter-propagation for ∆ =
20γ, Ω = 2∆, g

√
n = 20∆ and zB = 0.055σ, where σ is the

compressed pulse length inside the medium. The color coding
shows the local phase of ee, while the opacity reflects the two-
photon density |ee|2. The dashed lines are |z1−z2| = zB. The
full movie is provided in the supplementary material [35]. (e)
Numerically obtained phase shift ϕ [we plot cosϕ] and atten-
uation e−η as a function of dB compared to the analytical pre-
dictions (lines). The numerical data corresponds to two dif-
ferent parameter scans g

√
n = 400∆, zB = 0.0025σ, ..., 0.03σ

(dots) and zB = 0.03σ, g
√
n = 80, ..., 390 (squares).

bright-state polariton [24], which decays after the wave-
function exits the blockade region.

To verify these conclusions, we show in Fig. 2 and in
the supplementary movie [35] the results of numerical so-
lutions of the full equations for ee, es, se, and ee in the
off-resonant case. Despite the bright-polariton-induced
oscillations of ee inside and near the blockade region [35],
the final phase of the outgoing two-photon pulse perfectly
agrees with our analytical prediction [Fig. 2(e)]. While
also showing good agreement with the analytical result,
the obtained loss is slightly larger due to the bright-
state polariton admixture, which was neglected within
the above approximate treatment.

Provided the EIT-compressed two-particle wavefunc-
tion fits inside the medium, this process, thus, allows for
the implementation of a nearly lossless phase gate be-
tween two photons. Taking a specific example of cold Rb
atoms with |e〉 = 52P1/2 and |r〉 = 702S1/2 and using
Ω/2π = 2MHz [10] and ∆ = 20γ, we find zB = 15µm,
which, for a dense cloud with n = 1012 cm−3, gives
dB = 3

2πλ
2(2zB)n ≈ 9 [36, 37]. This yields a signifi-

cant phase of ϕ ≈ −0.2 and a very small attenuation
2η ≈ 0.02. One can increase dB further by using pho-
tonic waveguides [27–30] and working with a BEC [30].

In the co-propagating case, we define ee(z1, z2, t) =
〈0|E(z1)E(z2)|ψ(t)〉, es(z1, z2, t) = 〈0|E(z1)S(z2)|ψ(t)〉,
and ss(z1, z2, t) = 〈0|S(z1)S(z2)|ψ(t)〉 [Fig. 1(d)]. Defin-
ing es±(z1, z2) = [es(z1, z2)±es(z2, z1)]/2, dropping es−,
and taking the Fourier transform in time, we obtain
c∂Rv = 2M(r, ω)v. That is, the only difference from
the counter-propagating case is the replacement of ∂r
with (1/2)∂R. The resulting equations can be solved
separately at each r. As before, outside the blockade
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FIG. 3. Time evolution of |ee|2 for two co-propagating pho-
tons for Ω = γ, g

√
n = 100γ, and zb = 0.08σ. The dashed

lines are |z1 − z2| = zb, in agreement with the numerical re-
sults, which show the decay of ee within the dashed lines. The
full movie is provided in the supplementary material [35].

radius, the two-photon dark-state polariton propagates
with group velocity vg. Inside the blockade radius, M0

results in exponential attenuation of the two-excitation
wavefunction on a lengthscale ∼ L

d (γ2 + ∆2)/γ2, giving
rise to an avoided volume between the remaining pho-
tons. This is confirmed by our numerical calculations,
shown in Fig. 3 and in the supplementary movie [35].
Therefore, the two-excitation wavefunction evolves into a
statistical mixture of a single excitation and a correlated
train of two photons separated by zb(B). We emphasize
that the photon-density-independent avoided volume is
a unique feature of our system. On resonance, if zb is
larger than the EIT-compressed pulse length σ, a single
excitation will be generated deterministically. For a co-
herent input pulse, one similarly expects the wavepacket
to evolve with some probability into a correlated train
of blockade-radius-separated photons. Furthermore, if
zb > σ, such a system can function as a deterministic
single-photon source.

In summary, we have shown that Rydberg blockade in
EIT media can be harnessed for inducing strong photon-
photon interactions, with applications to generating non-
classical states of light, implementing nonlinear photonic
gates, and studying many-body phenomena with strongly
correlated light. Besides providing a framework for de-
scribing experiments [10], this work opens several promis-
ing avenues of research. With an eye towards single-
photon generation, one can extend the presented wave-
function treatment to a density matrix approach and ex-
plicitly analyze the propagation of the remaining excita-
tion after the interaction-induced decay of multi-photon
states. In addition, a gas of bosons (Rydberg polaritons)
with a hard-sphere core (of radius zb(B)/2) can be in-
vestigated both theoretically and experimentally in the
co-propagating case. In particular, the previously ne-
glected effects of es− endow these bosons with an effec-
tive mass ∝ −idγ/(LvgΓ), which plays a significant role
for propagation distances larger than those considered in
the present Letter. By including the effects of the coor-
dinates transverse to the propagation axis, one can ex-
tend this problem to higher dimensions. Furthermore, for

∆/C6 < 0, the effective potential shows a resonant fea-
ture, which can give rise to two-polariton bound states.
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