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Abstract

We show that when two boundary arcs of a Liouville quantum gravity random surface are

conformally welded to each other (in a boundary length-preserving way) the resulting interface is a

random curve called the Schramm-Loewner evolution (SLE). We also develop a theory of quantum

fractal measures (consistent with the Knizhnik-Polyakov-Zamolochikov relation) and analyze their

evolution under conformal welding maps related to SLE. As an application, we construct quantum

length and boundary intersection measures on the SLE curve itself.
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Introduction.—Liouville 2D quantum gravity was initially proposed by Polyakov in 1981

[1] to describe the summation over world sheets of a string (or gauge-theoretic flux line).

The resulting canonical 2D random surfaces, which depend on a real parameter γ, are also

expected to arise as continuum limits of the random-planar-graph surfaces developed via

random matrix theory, as first became evident (it remains to be proved rigorously) when

Knizhnik, Polyakov and Zamolodchikov (KPZ) [2, 3] proposed their famous relation between

critical exponents on a random surface and in the Euclidean plane. Via KPZ, Kazakov’s

exact solution of the Ising model on a random planar graph [4] matched Onsager’s results

in the plane. The KPZ relation itself was rigorously proven only recently [5].

Schramm-Loewner evolution (SLE), introduced by Schramm in 1999 [6], is a family of

conformally invariant random curves in the plane, depending on a real parameter κ, which

provides a canonical mathematical construction of the universal continuous scaling limit of

2D critical curves (such as percolation or Ising model interfaces). Its invention is on par

with Wiener’s 1923 mathematical construction of continuous Brownian motion. Critical

phenomena in the plane were earlier well-known to be related to conformal field theory

(CFT) [7], a discovery anticipated in the so-called Coulomb gas approach to critical 2D

statistical models (see, e.g., [8]), and now including SLE [9].

When describing a critical model on a random surface, Liouville field theory, itself a CFT,

is coupled via KPZ to the corresponding CFT, via a specific relation between the Liouville

parameter γ and the CFT central charge c [2, 3]. The heuristic value of this formalism was

checked against manifold instances of exactly solved lattice models [10], and further used to

predict properties of SLE [11].

The aim of this Letter is to provide the first direct and rigorous connection between SLE

and Liouville quantum gravity: gluing random surfaces (with the same γ) along parts of their

boundaries — and conformally mapping the combined surface to the half plane — produces

an SLE curve with parameter κ = γ2 as a random seam, a.k.a. a conformal welding. This in

turn rigorously establishes the relation between γ and c in the Liouville-CFT correspondence

mentioned above. (See [12] for mathematical details of this construction, a variant of which

was first conjectured by P. Jones [13].)

We also construct quantum gravity fractal measures, using the KPZ formula, and give

a quantum gravity interpretation of related SLE processes, thereby providing a rigorous

analog of the heuristic “gravitational dressing” of conformal scaling fields in Liouville theory
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coupled to CFT [2, 3, 10]. (See [14] for related ideas.)

Liouville quantum gravity.—Any simply connected Riemannian surface can be confor-

mally mapped to a fixed flat domain D ⊂ C, and described by the induced area measure on

D. (Critical) Liouville quantum gravity consists of changing the (Lebesgue) area measure dz

on D to the quantum area measure dµγ := eγh(z)dz, where γ is a real parameter and h is an

instance of the (zero boundary for now) massless Gaussian free field (GFF), with Dirichlet

energy or critical Liouville action (4π)−1
∫

D [∇h(z)]2 dz, and whose two point correlations

are given by Green’s function on D. The GFF h is a random distribution, not a function,

but the measure dµγ can be constructed (for γ ∈ [0, 2)) [5] as the limit as ε → 0 of the

regularized quantities dµγ,ε := εγ
2/2 exp[γhε(z)]dz, where hε(z) is the mean value of h on the

circle ∂Bε(z), boundary of the ball Bε(z) of radius ε centered at z; note in particular that

E eγhε(z) =
[

C(z;D)/ε
]γ2/2

[5], where C(z;D) is the conformal radius of D viewed from z

(i.e., up to a constant factor, the distance from z to the boundary ∂D).

Quantum fractal measures and KPZ.—We will now discuss Euclidean and quantum “frac-

tal measures” and provide a new heuristic but genuine derivation of the celebrated KPZ

formula [2]. The d-dimensional Euclidean or analogously quantum measure of planar fractal

sets is characterized by scaling properties:

• If we rescale a d-dimensional fractal X ⊂ D via the map z → ψ(z) = bz, b ∈ C (so

that the Euclidean area of D is multiplied by |b|2) then the d-dimensional Euclidean fractal

measure of X is multiplied by |b|d = |b|2−2x, where x (the so-called Euclidean scaling weight)

is defined by d := 2− 2x(≤ 2).

• If X is a fractal subset of a random surface S := (D, h), and we rescale S so that its quan-

tum area increases by a factor of |b|2, then the quantum fractal measure of X is multiplied

by |b|2−2∆, where ∆ is some analogous quantum scaling weight.

The above assertions suggest that the (γ-dependent) Liouville quantum measure Q(X, h)

of a fractal X ⊂ D should satisfy some fundamental scaling properties:

• If λ0 is a constant, then

Q(X, h+ λ0) = eαλ0Q(X, h) (1)

α := γ(1−∆). (2)

• If ψ(z) = bz, then

Q(ψ(X), h ◦ ψ−1) = |b|d+α2/2Q(X, h). (3)

3



t (  )z

ft

ft (  )0

h (  )z ~

ft (   )

f

D

D

w=

(  )

tηη h
~
(   )w

00x’ x

x

FIG. 1. Chordal “zipping-up” SLEκ map w = ft(z) with curve ηt in H. Given ft, the GFF h can be

sampled as the pullback h̃◦ft of a free boundary GFF h̃, plus the process ht (7). Conformal welding:

the quantum boundary lengths of any real segments [0, x] and [x′, 0] such that ft(x) = ft(x
′) ∈ ηt

are equal [12]. The SLEκ X = η̃ on the left is h-independent.

We explain (3) heuristically: if we can cover X by N radius-ε balls, then it takes N|b|d such
balls to cover bX . One next observes that h(·) := h(·) − hε(z) on Bε(z), given hε(z), is a

projected GFF on a disc, which is independent of hε(z) and z (up to negligible effects of

∂D; see [5]), so one can apply (1) to h + λ0, with the local shift λ0 = hε(z). The expected

resulting conformal factor E eαhε(z) will be |b|α2/2 times larger in the domain bD, because of

the scaling C(bz; bD) = |b|C(z;D). Thus the expected (w.r.t. h) quantum measure of bX

within one of the ε-balls covering bX (near bz) should be |b|α2/2 times that of X within one

of the ε-balls covering X (near z). The law of large numbers then yields (3).

• Q
(

ψ(X, h)
)

= Q(X, h) whenever ψ is conformal and

ψ(D, h) :=
(

ψ(D), h ◦ ψ−1 −Q log |ψ′|
)

, Q =
γ

2
+

2

γ
. (4)

This is because (see [5, 10]), the pair S = (D, h) describes the same Liouville quantum

surface (up to coordinate change) as the conformally transformed pair ψ(D, h).
These properties taken together (for ψ(z) = bz) imply

d = αQ− α2/2, (5)

which by (2) and (4) is equivalent to the KPZ formula [2]: x = (γ2/4)∆2 + (1− γ2/4)∆.
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SLE definition.—Chordal SLE [6] is a random non self-crossing path in the complex half

plane H; we mainly use here a (time-reversed) version defined at time t ≥ 0 by a “zipping

up” conformal map w := ft(z), from the complex half-plane H to the slit domain H\ηt, with
the SLE segment ηt := ft(R) \ R (or its external envelope) from 0 to the tip ft(0) (Fig. 1).

It satisfies the stochastic differential equation (SDE), dft(z) = −2dt/ft(z) −
√
κdBt (with

f0(z) = z), where Bt is standard Brownian motion with B0 = 0, and κ ≥ 0. If 0 ≤ κ ≤ 4,

then SLEκ is a simple curve, while for 4 < κ < 8 it develops double points and becomes

space-filling for κ ≥ 8 [15]. Of particular physical interest are the loop-erased random walk

(κ = 2) [16], the self-avoiding walk (κ = 8/3), the Ising model interface (κ = 3 or 16/3)

[17], the GFF contour lines (κ = 4) [18], and the percolation interface (κ = 6) [19].

A (reverse) SLE martingale.—Define a real stochastic process for t ≥ 0 and z ∈ H, by

h0(z) := (2/
√
κ) log |z| (6)

ht(z) := h0 ◦ ft(z) +Q log |f ′
t(z)|. (7)

By stochastic Itô calculus (i.e., using the Brownian local covariations d〈Bt, Bt〉 = (dBt)
2 =

dt, d〈Bt, t〉 = dBtdt = 0 and d〈t, t〉 = (dt)2 = 0), the particular choice in (7),

Q =
√
κ/2 + 2/

√
κ, (8)

gives a driftless diffusion process dht(z) = −Rt(z)dBt, with Rt(z) := ℜ[2/ft(z)]. Then

ht(z) is a time-changed Brownian motion (called a local martingale) with local covariation

d〈ht(y), ht(z)〉 = Rt(y)Rt(z)dt, having the further martingale property Eht(z) = h0(z).

Consider now the Neumann Green function in H, G0(y, z) := − log(|y−z||y−z|), and de-

fine the time-dependent Gt(y, z) := G0

(

ft(y), ft(z)
)

, i.e., G0 taken at image points under ft.

A simple calculation of the Green function’s variation shows that−dGt(y, z) = d〈ht(y), ht(z)〉
(Hadamard’s formula). Integrating w.r.t. t yields the covariation of the ht martingales

〈ht(y), ht(z)〉 = G0(y, z)−Gt(y, z). (9)

Taking the limit y → z in the latter, one obtains

〈ht(z), ht(z)〉 = C0(z)− Ct(z), (10)

where Ct(z) := − log
[

ℑft(z)|f ′
t(z)|

]

.

SLE-GFF coupling.—Consider h := h̃+h0, sum of an instance h̃ of the Gaussian free field

on domain D = H with free boundary conditions (f.b.c.) on R (up to additive constant), and
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of the deterministic function h0 (6). This h can be coupled [12] with the reverse Loewner

evolution ft described above so that, given ft, the conditional law of h (denoted by h|ft) is
(Fig. 1)

h(z)|ft
(law)
= h̃ ◦ ft(z) + ht(z), (11)

where h̃◦ft is the pullback of the free boundary GFF h̃ in the image half-plane, and where ht

is the martingale (7). This means that to sample h, one can first sample the Bt process (which

determines ft), then sample independently the f.b.c. GFF h̃ and take (11). Its conditional

expectation w.r.t. h̃ is the martingale E
[

h(z)|ft
]

= ht(z). Recall that the Green’s function

G0(y, z) = Cov[h̃(y), h̃(z)], thus Gt = Cov[h̃ ◦ ft, h̃ ◦ ft]. The random distribution h̃ ◦ ft and
the set of (time changed) Brownian motions ht are Gaussian processes, whose respective

covariance Gt and covariation 〈ht, ht〉 thus add from (9) to the constant covariance G0; this

in essence yields (11) [12].

Liouville invariance.—Owing to (7), we observe that the r.h.s. of (11) is of the form

h ◦ ft + Q log |f ′
t|. For Q given by (4), this is precisely the transformation law (4) of the

GFF h under the conformal map f−1
t [5, 10]. Then the pair (H, h̃ ◦ ft + ht) = f−1

t (H \ ηt, h)
describes the same random surface as the pair (H \ ηt, h): Given ft, the image under ft of

the measure eγh(z)dz in H is a random measure whose law is the a priori (unconditioned)

law of eγh(w)dw in H \ ηt.
By identifying (4) and (8), we find two dual solutions

γ =
√

κ ∧ (16/κ), γ′ = 4/γ. (12)

The first solution γ ≤ 2 corresponds precisely to the famous relation [2, 3, 10] γ =
(√

25− c−
√
1− c

)

/
√
6, between the parameter γ in Liouville theory and the central charge c = 1

4
(6−

κ)(6 − 16/κ) of the SLE’s CFT [9] coupled to gravity. The second solution γ′ = 4/γ ≥
2 corresponds to a dual model of Liouville quantum gravity, in which the quantum area

measure develops atoms with localized area [5, 20], and will be discussed elsewhere.

Quantum conformal welding.—In the particular coupling (11) of h and ft, the two strands

of the boundary to be matched along ηt when “zipping up” by the reverse Schramm-Loewner

map ft have the same quantum length (at least for κ < 4) (Fig. 1). This property defines a

quantum conformal welding, and actually determines ft as a function of h [12].

Let now η̃ be an (infinite) SLEκ, independent of h (Fig. 1). For each time t ≥ 0,

the forward, “zipping down” SLE flow map f−t, which obeys the same SDE as ft, but for
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dt→ −dt, maps H \ η̃t → H, where η̃t is the SLE curve segment up to time t. When κ < 4,

η̃ divides H into a pair of welded quantum surfaces that is stationary w.r.t. zipping up or

down via the transformations ft (t ∈ R) [12]. The relation (12) between γ and κ is now

rigorously clear: conformally welding two γ-quantum surfaces produces SLEκ.

Exponential martingales.— Let us introduce the conditional expectations of exponentials

of the field (11), Mα
t (z) := E

[

eαh(z)|ft
]

, depending on a real parameter α, which are fun-

damental objects describing quantum gravity coupled to the SLE process. They can be

calculated explicitly in terms of (7) and (10):

Mα
t (z) = exp

[

αht(z) + (α2/2)Ct(z)
]

(13)

= |f ′
t(z)|d |w|2α/

√
κ(ℑw)−α2/2, (14)

with w = ft(z) and d given by the KPZ formula (5). Because of (10), (13) is an exponential

martingale with respect to the Brownian motion driving the reverse SLE process, so that

EMα
t (z) = Mα

0 (z) = |z|2α/
√
κ(ℑz)−α2/2. (15)

A stronger statement is the identity in law of the conditional exponential measure

(

eαh(z)|ft
)

dz
(law)
= |f ′

t(z)|d−2eαh(w)dw, (16)

with dw = |f ′
t(z)|2dz, and whose expectations (14) agree.

Expected quantum area.—For α = γ (12), d = 2 in (5)

dA := dz E[eγh(z)|ft] = dw |w|2−κ/2(sinϕ)−κ/2, κ ≤ 4

= dw(sinϕ)−8/κ, κ ≥ 4;ϕ := argw.

We now construct explicit invariant SLE quantum measures, using the martingales (13) for

α 6= γ.

SLE quantum length measure.—An SLE measure recently introduced in the context of the

so-called natural parametrization of SLE [21] describes the “fractal length” of the intersection

X ∩D of the SLEκ fractal path X = η̃ (from 0 to ∞) with an arbitrary domain D ⊂ H (Fig.

1). It is shown in [21] that its expectation with respect to the SLEκ∈[0,8] law is finite for any

bounded D, and given by ν(D) :=
∫

D
G(z)dz, where G(z) := |z|a|ℑz|b, with a = 1 − 8/κ,

b = 8/κ + κ/8 − 2, is the SLE Green’s function in H. Under the forward direction SLE

flow f−t that generates X = η̃, the quantity Mt := (G ◦ f−t)|f ′
−t|2−d, where d := 1 + κ/8

7



is the SLEκ (Hausdorff) fractal dimension [22], describes the density of expected Euclidean

fractal length of X \ η̃t, given the segment η̃t [21]. This Mt is a local martingale w.r.t. the

forward SLE flow f−t [21]. Geometrically,
∫

D
Mt(z)dz is the expected length of X ∩D given

f−t (a martingale), minus the length of the segment η̃t ∩ D (an increasing process); this

so-called Doob-Meyer decomposition is unique and actually determines the latter length as

a stochastic process [21].

We extend this construction to the quantum case by defining the expected (w.r.t. X ,

given h) Liouville quantum length νQ of an infinite SLE path in a domain D

νQ(D, h) :=

∫

D

eαh(z)G(z)dz, (17)

where α =
√
κ/2 (= γ/2 for κ ≤ 4, and γ′/2 for κ > 4) is chosen to satisfy KPZ (5)

for the SLE dimension d = 1 + κ/8 (and Seiberg’s bound α ≤ Q [5, 23]). Under the

forward SLE flow f−t, the corresponding integral
∫

D
eαh(z)Mt(z)dz yields, by Doob-Meyer,

an implicit construction of the quantum length measure. (It exists by [24] since the second

moment E[eαh(y)+αh(z)Mt(y)Mt(z)] is bounded by |y− z|d−2, with d = d−α2 = 1−κ/8, thus
integrable for d > 0, i.e., κ < 8. It coincides with the Liouville boundary measure defined

on R by unzipping via f−t [5, 12]; this follows rigorously from [21] under a finite expectation

assumption.)

Alternatively, using (16), we can condition (17) on the reverse SLE flow ft, and get the

transformation law

νQ|ft :=
∫

D

(

eαh(z)|ft
)

G(z)dz
(law)
=

∫

Dt

eαh(w)Nt(w)dw

where Dt := ft(D), and where Nt(w) := G(z)|f ′
t(z)|d−2, with z = f−1

t (w), formally corre-

sponds to replacing in the martingale Mt the zipping-down map f−t by the inverse map f−1
t

(which has the same law). The expectation of (17) w.r.t. h, conditioned on ft, is from (14)

E[νQ|ft] =
∫

D

Mα
t (z)G(z)dz =

∫

Dt

Mα
0 (w)Nt(w)dw,

where Mα
0 (w) = |w|(ℑw)−κ/8 is the (unconditioned) free boundary GFF expectation

E eαh(w). Finally, taking expectation w.r.t. ft via (15) gives the expected quantum length in

D, finite for κ ∈ [0, 8) (here ϑ := arg z):

EνQ(D) =

∫

D

dzMα
0 (z)G(z) =

∫

D

(sinϑ)8/κ−2dz;
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it coincides with the Euclidean area of D for κ = 4.

Boundary exponential martingales.—Consider now the reverse SLE map ft(x) restricted

to the real axis, with x ∈ f−1
t (R+), such that f ′

t(x) ≥ 1 [15]. The boundary analogs of the

exponential martingales (13) are

M̂β
t (x) := E

(

eβh(x)|ft
)

= eβht(x)[f ′
t(x)]

−β2

,

for any real β, such that EM̂β
t (x) = M̂β

0(x) = x2β/
√
κ. From (7) one has M̂β

t (x) =

f ′
t(x)

d̂u2β/
√
κ with u := ft(x) and d̂ = βQ− β2, the boundary analog of KPZ (5) [5].

The expected Liouville quantum boundary length dL := dxE[exp(β̂h(x))|ft], is obtained
for d̂ = 1, with β̂ = γ/2 as expected [5], and with the invariant forms dL = u du for κ ≤ 4,

and dL = u4/κ du for κ > 4.

SLE quantum boundary measure.—A boundary fractal measure ν̂, supported on the inter-

section of a chordal SLEκ curve X = η̃ with the axis R, for κ ∈ (4, 8), has been constructed

recently [25], For any interval I ⊂ R+, its expectation is the simple integral ν̂(I) =
∫

I
xd̂−1dx,

where d̂ = 2− 8/κ is the SLEκ Hausdorff boundary dimension. We define the SLE expected

quantum boundary measure ν̂Q as

ν̂Q(I, h) :=

∫

I

eβh(x)xd̂−1dx,

where β =
√
κ/2 − 2/

√
κ satisfies the boundary KPZ relation above for d̂ (and the bound-

ary Seiberg bound β ≤ Q/2 [5, 23]). As in the bulk case, Doob-Meyer and integrability

arguments imply that the measure exists and is non-trivial. Its expectation Eν̂Q(I) =
∫

I
x2−12/κdx is finite for any κ ∈ (4, 8]; it coincides with the Euclidean boundary length for

κ = 6.

We provided a foundational relationship between SLE, KPZ and Liouville quantum grav-

ity. We hope it will help to solve the outstanding open problem of rigorously relating them

to discrete models and random planar maps.
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