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Using hydrodynamic simulations we examine the behavior of single polymers in a confined colloidal
suspension under flow. We study the conformations of both, collapsed and non-collapsed polymers.
Our results show that the presence of the colloids has a pronounced effect on the unfolding/refolding
cycles of collapsed polymers, but does not have a large effect for non-collapsed polymers. Further
inspection of the conformations reveals that the strong flow around the colloids and the direct
physical compressions exerted on a globular polymer diffusing in between colloidal shear bands
largely facilitates the initiation and unraveling of the globular chains. These results are important
for rheological studies of (bio)polymer-(bio)colloid mixtures.

Understanding the dynamic behavior of dilute poly-
mers in flow has been an active research area during the
last decades because of its direct relevance to the rheo-
logical properties of polymer solutions [1], as well as to
the emerging technologies of single-chain analysis of DNA
molecules [2]. More recently, it has also been discovered
that the dynamics of globular (or collapsed) polymers
directly correlates with the functionality of certain pro-
teins in the blood that are crucial during the blood clot-
ting cascade [3]. Theories [4] and experiments [2, 5] have
shown that polymers in good or Θ-solvent undergo peri-
odic unfolding/refolding cycles when subjected to shear
flow. This stretch-and-tumble behavior begins to occur
at relatively small shear rates as long as the strain rate is
faster than the characteristic chain relaxation time. Also,
it is found that the mean extension of non-collapsed poly-
mers varies smoothly with the shear rate [2, 4], and no
well-defined deformation transition has been observed.
On the other hand, polymers under bad solvent condi-
tions (i.e. collapsed polymers) display in shear flow a
well-defined globule-stretch transition at a critical shear
rate that is about two orders of magnitude higher than
the shear rate needed to unfold polymers in good or Θ-
solvent [6, 7]. To understand this behavior, a nucleation
based mechanism similar to that found in the pioneer-
ing work of de Gennes for non-collapsed polymers [4] has
been proposed, and the scaling laws derived from this
model appear to be in excellent agreement with simula-
tions results under the same conditions [6, 8].

The properties of very dilute polymer solutions are im-
portant to understand the physical origin of the dynam-
ics of polymers in flow, but in most applications one does
not have single polymers. Instead, one would typically
have a dense solution and in many cases a mixture with
colloidal particles. Thus, it is of interest to understand
how the dynamics of the single chains is modified under
these conditions. In this Letter we study such scenario
by exploring how polymers behave in sheared colloidal
suspensions. Our particular motivation comes from re-
cent studies on the protein von Willebrand factor (vWF),
which is one of the largest soluble biomacromolecules
known [9]. vWF plays an important role in the initial

stages of the blood clotting process, and there is strong
evidence that its function is directly related to the local
hydrodynamic conditions [3, 10, 11]. Simulations which
consider a globular chain in shear flow have captured the
key dynamics of vWF in the absence of other cells [6, 8],
but it is desirable to understand if platelets or red blood
cells, which occupy ∼40% of the volume in blood, have
an effect in the unraveling of vWF as well. To attack this
problem we consider the simplest model that we believe
captures the essential physics of the problem, namely a
monodisperse colloidal suspension with a homopolymer
undergoing shear flow, and simulate it using hydrody-
namic simulations. The particular question we address
here is how the unfolding/refolding cycles of the polymers
in shear flow are affected by the presence of the colloids.
Interestingly, we find that the stretching of non-collapsed
polymers is not affected by the presence of colloids (at
least up to 30% volume fraction), except at very high
shear rates. However, when considering collapsed poly-
mers we find that the colloids strongly affect the globule-
stretch transition in a non-trivial fashion. Particularly,
we find that the shear rate at which unfolding occurs
is reduced by fivefold in some cases when colloids are
present. The mechanism responsible for this enhance-
ment in unfolding is colloidal compression of the poly-
mers when crossing bands, which lowers the free energy
necessary to create protrusions that the flow can pull out.
This is corroborated by looking at different colloidal sizes
and noting that there is a non-monotonic behavior on
the stretching depending if shear bands are well devel-
oped or not. In order for the bands to form, the width of
the channel has to be commensurate with the size of the
colloids. There are two different arrangements in which
one can closepack the plane perpendicular to the shear-
ing walls: a hexagonal and a cubic packing. The colloids
are said to be commensurate if the width of the chan-
nel is an integer multiple of the distance between two
colloidal planes in either the hexagonal or cubic arrange-
ment [12]. If this is the case, fully developed shear bands
typically appear and the polymers are more stable while
for non-commensurate cases colloids tend to cross more
often between bands and the probability of compressing
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a polymer is strongly enhanced. Finally, we must say
that although our motivation comes from blood clotting,
analogous systems are ubiquitous in our world and found
in everyday items such as ink, milk, and paint. However,
present research has mainly focused on the microstruc-
tures or the phase behavior of the colloids, and the inter-
nal degrees of freedom of the polymer chains have usually
been ignored [13]. We believe that the dynamics of the
polymer chains is as important as that of the colloids,
especially in the driven systems.

Our model system consists of purely repulsive spheres
(colloids) of size rc with a no-slip boundary condition
at the surface [14]. The colloid volume fraction, which
is denoted by φ, is defined as the total volume occu-
pied by the colloids divided by the volume of the sim-
ulation box. The polymer consists of N = 50 beads
of radius a interacting through the intrinsic potential
U = Us + ULJ . The first term accounts for the connec-
tivity of the chain, Us = κ

2kBTΣN−1
i=1 (ri+1,i−2a)2, where

ri+1,i is the distance between adjacent beads along the
chain, and the spring constant is taken to be κ = 800/a2

that ensures the average bond length is not bigger than
10% the equilibrium bond length for all the shear rates
considered. The second term is a Lennard-Jones (LJ) po-
tential ULJ = ε̃kBTΣij [(2a/ri,j)

12 − 2(2a/ri,j)
6], where

ε̃ determines the depth of the potential, and ri,j is the
distance between the ith and the jth bead. In this work,
we use a Θ-solvent for which ε̃ = 0.41 and a bad sol-
vent with ε̃ = 2.08 that strongly collapses the chains
[6]. Except for the intra-polymer interactions that were
described above, every other interaction (i.e. polymer-
colloid, colloid-colloid, polymer-wall, and colloid-wall) in
the system is purely repulsive. To implement this repul-
sive force, we also use a stiff Hookean interaction that is
only present if the distance between two particles is less
than the sum of their radii [15]. The simulation box is
bounded in the z-direction by no-slip walls separated by a
distance H = 33, and periodic boundaries are used in the
other two directions. The implicit fluid inside the simula-
tion box is simulated on a three dimensional grid by the
fluctuating lattice-Boltzmann (LB) equation [16], which
accounts quantitatively for the dissipative and fluctuat-
ing hydrodynamic interactions. For simplicity, we set the
grid spacing ∆x and the LB time step ∆t equal to unity.
Other parameters for the fluid are the density ρ = 1,
the kinematic viscosity ν = 1/6, and the temperature
kBT = 10−4. The polymer beads couple to the fluid in
a dissipative manner [17]; in the LB units, the effective
radius of the polymer beads is a = 0.5, and the character-
istic monomer diffusion time is τ = 6πηa3/kBT ∼= 4×103,
where η is the dynamic viscosity of the fluid that η = νρ.
A detailed descriptions of the simulation methods for the
polymers and the colloids can be found in reference [18].

A representative snapshot of our simulation results is
presented in Fig. 1(a), where we show a stretched chain
(blue beads) in a sea of colloids (red spheres) undergoing
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FIG. 1. (a) Snapshot of a single-chain (blue beads) with a
cohesive energy ε̃ = 2.08 unfolding in a sheared colloidal sus-
pension (red spheres) with φ = 15% and rc = 5. (b) Typical
extension sequences as a function of time for a collapsed poly-
mer at different colloid volume fractions φ = 0%, 15%, and
30%. The other parameters are γ̇τ = 2 and rc = 5.
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FIG. 2. Rescaled chain extension 〈Rs〉/2Na for non-collapsed
(open symbols) and collapsed polymers (filled symbols) as a
function of the shear rate γ̇τ for (a) different colloid volume
fractions (φ = 0%, 15%, and 30%) with fixed radius rc = 5,
and (b) fixed volume fraction φ = 30% with different radiuses:
rc = 3, 4, and 5.

shear flow. The polymer extension Rs is defined as the
projected polymer length along the flow direction as illus-
trated. In Fig. 1(b) we present three time sequences of
the extension of the collapsed polymers (with ε̃ = 2.08) at
the same shear rate γ̇τ = 2 but with different colloid vol-
ume fractions. Clearly, the presence of the colloids has an
important effect on the unfolding of the collapsed poly-
mers since for φ = 0% the chain remains collapsed, while
at higher volume fractions the chain starts exhibiting pro-
nounced and repeated elongation and folding events.

Interestingly, the enhancement observed for collapsed
polymers is not seen in Θ-chains, as can be appreciated
in Fig. 2(a), where we show the mean extension 〈Rs〉 for
both the non-collapsed and collapsed polymers as a func-
tion of the dimensionless shear rate γ̇τ for different φ’s.
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FIG. 3. Isolated snapshots of a collapsed polymer globule
(blue) encountering one (a and b) or two (c) colloids (red) in
flow (γ̇τ = 2 and rc = 5). See text for details.

As can be seen in this plot, the effect of the colloids is
minimal for non-collapsed chains and can only be visible
at large shear rates (to be discussed in a future pub-
lication), while for collapsed polymers the unfolding is
clearly enhanced and is correlated with the volume frac-
tion. In spite of the fact that in confined channels the
size of the colloids is important to determine the struc-
ture of the fluid, we have also used three different colloid
sizes rc = 3, 4, and 5, and fixed φ. As in the previ-
ous scenario, we do not find any differences in the aver-
age stretching of Θ-polymers. However, we observe that
〈Rs〉 has a non-monotonic dependence on rc in the case
of globular chains. When rc = 5 we observe the strongest
enhancement, while for rc = 4 we observe the smallest
enhancement with rc = 3 being somewhat in the middle.

In order to understand the origin of the enhancement
observed in collapsed polymers, we show isolated snap-
shots of a polymer globule encountering one or more col-
loids in Fig. 3. These snapshots elucidate how the col-
loids help to unravel the collapsed polymers. The reason
is because one can clearly see that when a polymer col-
lides with one (Fig. 3(a) and (b)) or two (Fig. 3(c))
colloids the chain becomes compressed due to the shear
stress applied on the system, as well as the hydrodynamic
conditions around the colloid. As the polymers become
flattened or elongated on the surface of the colloids, chain
protrusions have a higher probability of appearing be-
cause the free energy per protrusion in the quasi two
dimensional pancake globule is much lower than in the
spherical case. In some circumstances we even see star
like shapes on the surface of colloids as shown in Fig.
3(b) where we note that we only have repulsive interac-
tions between the polymers and the colloids, so this effect
can only be ascribed to hydrodynamics. To make our ar-
gument more precise, we first consider the free energy F
(in units of kBT ) in the strongly collapsed case necessary
to pull out a filament of length l in 2D and 3D which is

proportional to F ∼ l∆ε̃ = l(ε̃− ε̃(2D/3D)
c ), where ε̃c is the

collapse transition point of the polymer chains [6, 8]. It

is well known that ε̃
(2D)
c > ε̃

(3D)
c because of the reduced

number of contacts possible in 2D [19, 20]. Previous stud-
ies have predicted a nucleation type mechanism for the
unfolding of collapsed polymer chains in flow that relies
on these thermally excited protrusions [6, 8, 21]. The
main idea behind this argument is that one needs a pro-
truding polymer segment that is long enough so that the
hydrodynamic drag force can pull the segment out and
eventually unfold the whole chain. If the segment is too
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FIG. 4. Top panels: Number density of polymer beads np

(red line), extended polymer beads ne (green line), and col-
loids nc (black line) as a function of the z position within
the channels. The extended polymer beads are defined by the
condition dRs(t)/dt > 0. Bottom panels: Number density
of the extended polymer beads divided by the total number
density of the polymer beads. The different parts correspond
to: (a) φ = 0%, (b) φ = 30% (rc = 5), (c) φ = 30% (rc = 4),
and (d) φ = 30% (rc = 3). Other parameters are ε̃ = 2.08,
γ̇τ = 10. Note: the data in the gray areas has been deleted
because the density of polymer is negligible.

small, the drag force will not be able to overcome the
cohesive energy ∼ ∆ε. Thus, the presence of the colloids
effectively enhances the probability for creating large pro-
trusions due to the formation of these deformed pancakes,
as explained above. On the other hand, the stretching of
non-collapsed polymers occurs at lower shear rates and
is characterized by a smoother deformation. Instanta-
neous perturbations by the colloids on the shape of the
non-collapsed coils do not have any obvious effect on the
average extension for the non-collapsed case.

The aforementioned mechanism of unfolding that cor-
responds to an effective local confinement effect in space
and time is important to understand the origin of the
enhanced unfolding rate, yet cannot account for the non-
monotonic character on the size of the colloids. In this
respect, one needs to analyze how the size affects the
overall hydrodynamics. A particularly useful method is
to look at the band structure formed by the colloids in re-
sponse to the shear flow. Literature has shown that con-
fined colloidal suspensions exhibit complex ordering tran-
sitions under shear, and the transitions highly depend on
commensurability between the particle radius and den-
sity with the dimensions of the channel [12]. In Fig. 4
we show the number density of polymers (red line), and
colloids (black line) as a function of the z position within
the channels (see the figure legend for detailed simulation
parameters). The green line corresponds to those poly-
mers in the extended state and will be discussed later.
The first observation is that for polymers without col-
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loids, Fig. 4(a), the polymers accumulate in the center
of the channel. This behavior is due to the hydrodynamic
lift force exerted on the stretched conformations [22–24].
Secondly, it is observed that for rc = 5 and rc = 3 (Fig.
4(b) and (d)) only diffuse colloidal shear bands appear in
the middle. In contrast, the band structure in the case
of rc = 4 seems to be fully developed (clear high peaks
in Fig. 4(c)). More importantly, the distribution of the
polymer beads is highly regulated by the colloidal bands,
as can be seen more clearly for rc = 4, where the poly-
mer beads almost always reside between the bands of the
colloids, seen as alternating peaks of black and red lines
on Fig. 4(c). On the contrary, it is more probable for
the polymers to reside within the diffuse bands for the
rc = 3 and rc = 5 cases, which can be observed from
the large overlaps of the black and the red lines in the
middle of the channels in Fig. 4(b) and (d). The ratios
of the number density of the extended polymer beads ne
(green line; see the figure legend for the definition) and
the total number density of the polymer beads np (red
line) are shown in the bottom panels of Fig. 4. This ratio
(ne/np) shows the relative probability for the polymers
to be extending in the channel. As can be clearly seen
in the bottom panel of Fig. 4(c), the unfolding of the
polymers is largely enhanced within the colloidal bands,
and is suppressed between the bands. Since the polymer
beads are mostly in between bands when rc = 4, but mix
more within the middle bands in the rc = 3 and rc = 5
cases, the average extension is non-monotonic depending
on the size of the colloids.

In summary, we have presented a detailed analysis
of the dynamics of polymers in colloidal suspensions,
putting particular attention on the effect that colloids
have on the stretching transition observed in shear flows.
We found that the stretching of Θ-polymers is not af-
fected by the presence of colloids up to a volume fraction
of 30%, while in the case of globular polymers we see a
clear enhancement. The underlying mechanism respon-
sible for this behavior was shown to be the compression
that the chains undergo while colliding with the colloids,
which effectively places the polymers in a quasi 2D state
that promotes the nucleation of polymeric protrusions
and eventually leads to unfolding events. The effect of
the colloid size on the average polymer extension was
found to be important for the globular case, and this was
traced back to the appearance of bands that could range
from a fully developed state to a diffuse state depending
on the commenssurability of the colloidal density and size
with the channel dimensions. If the bands are fully devel-
oped we find that this stabilizes the collapsed polymers,
while in the case of the diffuse bands polymer-colloid in-
teractions are more prevalent that in turn destabilize the
globules. Returning to our original motivation which was
vWF, we believe that the results found here could po-

tentially be important in understanding the unfolding of
vWF in blood since, as shown, the presence of colloids
such as platelets of red blood cells could in principle en-
hance the unfolding of vWF. Nevertheless, the dynamics
of these cells is far more complex than that of the colloids
presented here which could lead to other behaviors not
capture in the present work. Further experiments in this
area are needed to validate our predictions.
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