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We theoretically study the effect that stripe-like superconducting inclusions would have on the
non-linear resistivity in single crystals. Even if the stripe orientation varies throughout the sample
between two orthogonal directions due to twinning, we predict that there should be a universal
dependence of the nonlinear resistivity on the angle between the applied current and the crystal
axes. This prediction can be used to test the existence of superconducting stripes at and above the
superconducting transition temperature in cuprate superconductors.

Study of the high-temperature superconductivity
(HTS) problem in cuprates has been complicated
by proximity of the superconducting state to non-
superconducting ordered phases. Among them, only an-
tiferromagnetic insulating state has been unambiguously
identified as always present in the undoped parent com-
pounds across all families of cuprates. The nature of the
pseudogap regime [1] that emerges upon doping, has re-
mained elusive, even though there are many theoretical
proposals for its origin [2–6]. One of the likely candi-
dates for at least a part of the pseudogap regime is the
spin and/or charge density waves (SDW/CDW), or their
strongly-coupled cousin, the stripe state [3, 4]. Indeed,
neutron scattering commonly detects elastic and inelas-
tic responses characteristic of static or slowly fluctuat-
ing incommensurate SDW in majority of cuprate fam-
ilies [7, 8]. Charge modulation is also observed [9–11],
albeit less commonly [12]. Naturally, charge and spin
modulations can locally modify the conditions for on-
set of superconductivity. Moreover, it is possible that
in the anharmonic regime that characterizes the stripe
state, local pairing mechanisms, which are not present in
the more conventional CDW and SDW setting, may be-
come operational [13–15]. In this case, stripes would be
an important contributor to the high values of supercon-
ducting transition temperature Tc in cuprates. The in-
plane spatial inhomogeneity of superconductivity would
be consistent with several anomalies commonly observed
in the underdoped cuprates, including suppressed super-
fluid density [16] and the spectral weight transfer in the
optical conductivity [17].

Identification of the stripe states, in contrast to har-
monic spin or charge modulations has been notoriously
difficult. Direct experiments that would measure the
transport anisotropy induced by the rotational symmetry
breaking caused by stripes are often hindered by sample
twinning or stripe ordering patterns that restore rota-
tional symmetry on the measurement length scale [18].
In addition, it is believed that in order to be compatible
with superconductivity, the stripes have to be dynamical,
i.e., fluctuating on some timescale.

In this letter we propose a method capable of detecting

signatures of superconducting stripes diluted in a nor-
mal matrix despite all these complications. It is based
on probing the spatial anisotropy of the non-linear trans-
port, which should be induced by superconducting stripes
in single crystal samples, even when linear transport is
completely isotropic. The method takes advantage of the
fact that unlike the linear response conductivity tensor,
which has to be rotationally invariant in tetragonal sys-
tems, the non-linear response in general is not. Super-
conductors have inherently non-linear I-V characteris-
tics, which makes them ideally suited for the proposed
method. Therefore, non-linear transport measurements
can help both to establish the temperature range within
which superconducting inclusions persist above above Tc,
as well as to determine the local spatial structure of these
inclusions. The method is not limited to static stripe
configurations; it applies as long as the fluctuation time
scale is sufficiently slower than the superconducting pair-
ing timescale.

We qualitatively demonstrate how anisotropic non-
linear resistivity can arise in a tetragonal system by con-
sidering a schematic model in Fig. 1a. Suppose that
within the CuO2 planes there are domains of supercon-
ducting stripes, which are primarily oriented along [100]
and [010] directions. Each superconducting segment has
a non-linear I-V characteristic, as shown schematically in
Fig. 1b. If the characteristic domain size is much smaller
than the crystal size, the tetragonal symmetry of the sys-
tem is not broken – the [100] direction is still equivalent
to [010]. Then, we are immediately forced to conclude
that linear resistivity must remain isotropic. In partic-
ular ρ0[110] = ρ0[100] (superscript “0” indicates that the

resistivity is taken at zero current).

Now, let us consider the non-linear resistivity of the
system. Suppose we apply current jx and measure elec-
tric field Ex, with direction x̂ either parallel to [100] or
[110] (two high-symmetry directions). For small applied
current, the superconducting segments have negligible re-
sistivity, and hence average resistivity of the system the
smallest. As jx increases, some of the segments quench
(when the local critical current Ic is reached), and the
overall resistivity increases. We therefore anticipate that
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FIG. 1: (a) System with stripes domains aligned along direc-
tions [100] and [010]. (b) I-V relations used for the super-
conducting stripes for different values of the critical current
Ic.

in both cases, the resistivity will increase non-linearly
with jx. However, the nonlinear resistivity in two cases
will not be the same, as can be easily seen from the follow-
ing argument, which is particularly simple in the dilute
stripe concentration limit. Suppose that in addition to
the current in the direction x̂, there is also a current in
the ŷ-direction. Qualitatively, it is clear that it should
make little difference for Ex in case x̂ = [100], but a big
difference when x̂ = [110]. That is because, in the lat-
ter case, jy current will directly contribute to reaching
the critical current Ic on the SC links involved in the
transport along x̂, while in the former, jy primarily sat-
urates the horizontal superconducting links, which are
largely irrelevant for the transport along x̂. Thus we see
that the non-linear resistivity has to be anisotropic, and
that the I-V dependence in the coordinate system where
x̂ = [100] and ŷ = [010] with good accuracy is given by

Ex = ρ(jx)jx,

Ey = ρ(jy)jy. (1)

That is, the electric field along the stripe pinning direc-
tion depends only on the current in the same direction.
In order to obtain the relation between the E and j

in any other planar coordinate system we only need to
perform a rotation of Eqs. (1) around ẑ-axis by angle θ
with the matrix Rẑ

θ ,

E′ = Rẑ
θρ(J)J = Rẑ

θρ(Rẑ
−θJ

′)Rẑ
−θJ

′ (2)

where

ρ(J) ≡
[

ρ(Jx) 0
0 ρ(Jy)

]

. (3)

The resistivity tensor in the rotated basis is

ρ′(J′) = Rẑ
θρ(Rẑ

−θJ
′)Rẑ

−θ. (4)

Naturally, in the limit of vanishing current we see that
the resistivity tensors coincide, ρ′ = ρ, as expected from
linear response of a tetragonal system. However, at a

finite current, the relationship is more complex. For in-
stance, if a current j′ is applied along direction x̂′, the
electric field response becomes

Ex′ = [ρ(j′ cos θ) cos2 θ + ρ(j′ sin θ) sin2 θ] j′

Ey′ = [ρ(j′ cos θ)− ρ(j′ sin θ)] sin θ cos θ j′
(5)

In particular, for the high symmetry direction θ = π/4
the resistivity is obtained from resistivity along θ = 0
by dilation of the current axis by a

√
2 factor, ρ′(j′) =

ρ(j′/
√
2). Another notable feature is the appearance of

the transverse electric field if current is applied away from
the high-symmetry directions, i.e. when θ is not an inte-
ger multiple of π/4. The induction of transverse electric
field in tetragonal systems is only possible in the presence
of nonlinear response.
To test the above reasoning, we consider an explicit

resistor network model that incorporates the described
qualitative features. The resistors, connecting the near-
est neighbor sites of a square lattice, Rij , are chosen at
random to be either “normal”, with constant resistivity
Rn, or “superconducting”, with the current-dependent
resistivity Rs(Js). The probability of superconducting
bonds is p. The Kirchhoff’s equations

∑

j=n.n.

Vi − Vj

Rij(Vi − Vj)
= 0, (6)

combined with current or voltage boundary conditions
give a system of nonlinear equations that can be used to
determine the local voltages {Vi}. In our model calcula-
tion, for the superconducting resistors we take the I-V
dependence as

Vs = Rs(Js)Js =

(

R0
s +

Rn −R0
s

e−4(Js−Ic) + 1

)

Js (7)

which at small currents has resistivity approximately
R0

s < Rn and at large currents Js >> Ic saturates to
the resistance of the normal links Rn as illustrated in
Fig. 1b. We will take Rn = 1 and R0

s = 0.05 unless
stated otherwise. In the simulations we used a system of
size 80× 80 sites with fixed voltage boundary conditions
in the direction of applied current, and periodic bound-
ary conditions in the transverse direction. Simulations
were performed for current applied along the bond and
diagonal directions (see Supplementary for illustrations).
In Fig. 2a we present the result of lattice simula-

tion when current is applied along the bond direction
(squares) for various values of superconducting link con-
centrations p and for Ic = 2. As expected, for large
values of applied current Jm, the resistivity saturates to
the “normal” value 1, while at low currents it drops by
an amount that increases with p. The width of the inter-
mediate nonlinear region decreases with increasing p.
Our lattice simulation results can be very accurately

reproduced by the effective medium theory (EMT). EMT
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FIG. 2: (a) Comparison between EMT and the numerical
lattice simulation. The lines correspond to Eq. (9) and the
squares to the numerical simulation. (b) Verification of the
“
√

2 scaling”. Circles and squares correspond to numerical
lattice simulations for the [100] and [110] directions, respec-
tively. The dashed lines correspond to the numerical data for
direction [110] with the current axis divided by

√

2.

is typically applied to study linear random resistor net-
works, where it well captures, e.g., percolation phenom-
ena [19]. Within EMT, one solves exactly the problem
of a particular random resistor R0 embedded in a per-
fect matrix composed of identical effective medium resis-
tors Rm. The value of Rm is determined self-consistently
from the condition that the voltage drop V0 on resistor
R0, averaged over the distribution, be equal to the av-
erage voltage drop Vm per link of the network. Here we
apply this procedure to the binary network that contains
nonlinear resistors. With the average current parallel to
the bond direction, it leads to the following equations

Js =
2gs(Js)

gm(Js) + gs(Js)
Jm (8)

gm(Js) = (p− 1

2
)(gs(Js)− gn)

+

[

(p− 1

2
)2(gs(Js)− gn)

2 + gngs(Js)

]1/2

(9)

where Jm is the externally applied uniform current per
unit cell, Js is the current through a superconducting
link, which needs to be determined self-consistently, and
for convenience we introduced conductances, gi ≡ 1/Ri.
These coupled nonlinear equations can be solved numer-
ically for any specified form of Rs(J). As can be seen
from Fig. 2a, non-linear EMT (solid lines) very well ap-
proximates our lattice simulation results, with the largest
deviation occurring at the percolation threshold, p = 0.5.
In Fig. 2b we present the comparison of lattice simula-

tions for the current applied along the bond (circles) and
diagonal (squares) directions. After rescaling the current
axis by a factor

√
2, the diagonal resistivity (dashed lines)

matches the resistivity in the bond direction, as was an-
ticipated from Eq. (5). Even at the percolation threshold,
p = 0.5, the scaling works remarkably well. The devia-
tion occurs due to the cross-talk between the horizontal
and vertical superconducting bonds, which was neglected
in Eq. (1). We have also performed simulations assuming

that superconducting links have random length, random
critical current, or internal structure (“patches” similar
to Fig. 1a). All these simulations (Supplementary Infor-
mation) show the same “

√
2” scaling.

When current is applied in an arbitrary direction rel-
ative to the crystal axes, in addition to the longitudinal
resistivity, there is also a finite transverse resistivity. The
full angular dependence of the longitudinal and trans-
verse resistivity obtained using Eq. (5) for Ic = 2 and
for p = 0.2, 0.8 is presented in Fig. 3. As expected, the
biggest anisotropy effects are concentrated in the range
of currents where the resistivity of the superconducting
links is nonlinear. This transverse response would be
completely absent in the linear resistivity of a tetrago-
nal system. Therefore, it represents a “null-point mea-
surement” that can be a very sensitive diagnostic of the
presence of local rotational symmetry breaking induced
by superconducting stripes.
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FIG. 3: Longitudinal (a,c) and transverse (b,d) resistivity as
a function of applied current (Jx, Jy) for p = 0.2 (a,b) and
p = 0.8 (c,d).

We now discuss the expected range of applicability of
our model to real materials. Our central assumption is
that only special links are superconducting, i.e., that the
Josephson coupling between them is relatively negligible.
Therefore, our model applies for the current densities ex-
ceeding the inter-stripe critical current density. On the
other hand, the non-linear behavior is expected to occur
for current densities up to the intra-stripe critical cur-
rent. This current can be estimated as a fraction of the
critical current density of the optimally doped cuprates,
which at low temperatures is about 107 A/cm2, decreas-
ing with temperature. For underdoped cuprates, due to
large inter-stripe separation this leaves a large window
applicability; however, in the optimal and overdoped ma-
terials, the window will shrink. Finally, we note that the
predicted non-linear transport signatures, are distinctly
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different from another potential source of nonlinearity
– the Joule heating. Namely, the window of currents
where non-linear effects due to local superconductivity
should exist, shrinks as the temperature increases above
Tc, vanishing at some T ∗

c , while Joule heating should in-
crease with increasing current indefinitely and should be
sensitive to the details of the thermal coupling to environ-
ment. Moreover, Joule heating is not expected to cause
any spatial anisotropy in resistivity.
Another issue that we can comment on within our su-

perconducting percolation model is the apparent discrep-
ancy between the superconducting fluctuation regime, as
extracted from the bulk probes [20] and from the AC
transport measurements [17, 21, 22]. In the AC trans-
port, one attempts to detect features characteristic of
superconductivity, such as the superfluid density, and
tracks their disappearance as a function of increasing
temperature. Experiments consistently find that super-
conducting fluctuation range above Tc, extracted this
way, is much more narrow than the one obtained from the
bulk measurements, such as diamagnetic response [20].
Within the uniform fluctuating superconductor scenario
these differences are difficult to reconcile [22]. However, if
we assume that the superconductor is intrinsically inho-
mogeneous, as in the model considered above, the rapid
disappearance of the transport signatures of supercon-
ductivity can be attributed to reduction of the supercon-
ducting fraction p below the percolation threshold above
Tc. Indeed, let us assume that the conductivity of the
normal links is gn = ατn and of the superconducting
links is gs = ατs/(1 + iωτs) in the relevant frequency
range, ωτn ≪ 1, where τs is the relaxation time in the
superconducting links and τn is the normal state relax-
ation rate (τs ≫ τn). The effective medium conductiv-
ity gm can be obtained from EMT, Eq. (9). We find,
above percolation threshold, gm ≈ (2p − 1)gs, while be-
low – gm ≈ gn/(1 − 2p), the latter having only a very
small imaginary part. The crossover occurs in a narrow
range of δp ∼ √

ωτn ≪ 1, i.e., the superconducting con-
tribution disappears very rapidly as the fraction of the
superconducting links goes below the percolation thresh-
old pc = 1/2 near Tc, even though disconnected super-
conducting inclusions may still persist to much higher
temperatures and contribute to other superconductivity-
sensitive measures. In Fig. 4 we show schematically the
behavior of gm(ω) expected from the EMT, which agrees
qualitatively with the experimental trends.
The lattice percolation model presented here, while

crude, provides a transport-based method to test the ex-
istence of local superconducting inclusions – supercon-
ducting stripes – in the cuprates at and above Tc. In
combination with the bulk probes, which are sensitive to
the local superfluid density (∝ Ic) and the volume frac-
tion p, it may help to shed light on the nature of the
pseudogap regime, from which the high-temperature su-
perconductivity emerges.
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FIG. 4: Frequency dependence of (a) Real and (b) Imaginary
parts of conductivity obtained from effective medium theory
for systems with different stripe concentrations p. τs/τn =
100.
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