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By using high-magnetic fields (up to 60 tesla), we observe compelling evidences of Integer Quan-
tum Hall Effect in trilayer graphene. The magnetotransport fingerprints are similar to that of the
graphene monolayer, except the absence of a plateau at filling factor ν = 2. At very low filling
factor, the Hall resistance vanishes due to the presence of mixed electron and hole carriers induced
by disorder. The measured Hall resistivity plateaus are well reproduced theoretically, using a self-
consistent Hartree calculations of the Landau levels and assuming and ABC stacking order of the
three layers.

PACS numbers: 61.72.Bb, 71.55.Cn

Introduction –More than 30 years after its initial discov-
ery in two dimensional electron gases (2DEG), the Inte-
ger Quantum Hall Effect (IQHE) remains one of the most
fascinating phenomena in condensed matter physics[1].
The recent discovery of graphene [2] boosted this research
field by providing a new 2D system where Dirac-like elec-
tronic excitations with Berry’s phase π leads to a new
form of IQHE [3, 4], with plateaus at σxy = (n+ 1

2 ) ge
2/h,

where g is the Landau level degeneracy due to spin and
valley degrees of freedom. A third type of IQHE was then
reported in bilayer graphene, where the 2π Berry’s phase
of charge carriers results in a conventional quantization
sequence, except that the last Hall plateau is missing
[5]. As the dynamics of charged carriers change every
time an extra graphene layer in added, it was theoreti-
cally anticipated that the Landau Level (LL) spectrum
of N -layer graphene systems would result in distinctive
IQHE features arising from an Nπ Berry’s phase. In
trilayer graphene, the zero-energy LL is expected to be
12-fold degenerate so that the Hall resistance plateau se-
quence follows the same ladder as in graphene, but the
plateau at ν = ±2 should be missing (see figure 1-a).
So far, most of the studies dedicated to IQHE in trilayer
graphene have been restricted to theoretical calculations
[6–9, 20, 21] while experimental data are limited [10, 11],
since the knowledge of the exact number of layers and
their relative stacking order are challenging to establish
unambiguously.

In this Letter, using both high field magneto-transport
measurements and Raman spectroscopy, a trilayer
graphene sample is clearly identified and allows us to re-
port on thentypical features of the fourth type of IQHE in
graphene-based materials. Self-consistent Hartree calcu-
lations of Landau levels (based on the Slonczewski-Weiss-
McClure (SWMC) tight binding model [12–14]) are favor-
ably compared to the experimental data, allowing an un-

ambiguous determination of the stacking order between
layers, which turns out to be given by the ABC stacking
geometry.

Experimental technique – Many Graphene flakes were
deposited onto a d = 280 nm thick thermally grown
silicon oxide on silicon substrate (used as a back-gate)
using micro-mechanical exfoliation of natural graphite.
Standard electron beam lithography and oxygen plasma
etching were used to contact electrically one particular
trilayer flake in the Hall bar geometry (see supplemen-
tary information [29] for technical details). For this
annealed device, the gate voltage required to reach the
charge neutrality point (CNP) is VCNP = −13.75 V,
indicating the presence of a n-type residual doping
estimated to n0 = 0.85 × 1012 cm−2. The Raman
scattering spectrum was measured at room temperature
using a confocal micro Raman scattering set-up using
He-Ne laser excitation (λ = 632.8 nm) with ∼ 1mW
optical power focused on a 1 µm diameter spot. The 2D
band feature (also called G′ feature) of this sample is
shown in figure 1-a (inset) and appears in the form of
a multicomponent feature characteristic of multi-layer
graphene [15], different from the one observed for a
mono-layer graphene processed in the same way (also
shown in the inset of figure 1-a). The experimental
IQHE of the sample under study is displayed in figure
1-b, together with bi-layer and mono-layer graphene
fingerprints of other samples. These samples have an
equivalent carrier density and similar mobility (see
legend of figure 1 for details). For graphene trilayer, the
sequence of the Hall resistance plateaus is described by
Rxy = h/νe2 where ν = 6, 10, 14.... Indeed, the IQHE in
trilayer graphene is indistinguishable from its monolayer
counterparts except at very high field where the ν = 2
quantized Hall resistance plateau is absent. We notice,
however, that the Hall resistance slightly overshoots the
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FIG. 1: (color online) a) Schematic representations of the IQHE in mono-, bi- and tri-layer graphene. The degeneracy of the
zeroth Landau Level (LL) is 4-fold degenerate in graphene, 8-fold degenerate in bilayer graphene and 12-fold degenerate in
trilayer graphene, leading to a sequence of Hall resistance plateaus shifted by 2h/e2Ω. Insert : raman spectrum of trilayer
graphene (red curve) and mono-mayer graphene (black curve) measured on the same substrate. b) Experimental IQHE in tri,
bi and mono-layer graphene for equivalent carrier density n = 3.4 × 1012 cm−2 and similar mobility µ = 1200 cm2V−1.s−1.
The optical image of the trilayer graphene sample is shown in inset. As contact 1 was proven defective, a constant current of
i = 1µA is injected through contacts 2 and 4. The Hall resistance is measured between contacts 3 and 5.

ν = 6 resistance plateau at very high magnetic field.
This surprising feature triggered the need for a detailed
theoretical analysis of the LL spectrum [16, 17] which
goes beyond the simple considerations presented earlier
in the introduction.

Theoretical Model – To model a gated graphene p-layer,
a self-consistent approach is used, integrating Gauss’s
law across the layers with p equations φj−1 − φj =
4πedj

κj

∑p
i=j ni , (j = 1, . . . , p), with φ0 ≡ φg, the gate

potential. Here ni is the total charge density (including
positive ions) in layer i in units of −e (e > 0), and dj
and κj are the separations and dielectric constants be-
tween layers j−1 and j (cgs units). To this system we
add the equation eVg = ζ − ζg, where ζ and ζg are the
electrochemical potentials for the multilayer and gate, re-
spectively. We can set µg = 0 in the gate, so ζg = −e φ0,
whence eVg = ζ + e φ0. We may also set φp ≡ 0. We take

dj>1 = 3.4 Å between graphene layers and d1 = 280 nm,
the gate separation in our device.
In a uniform magnetic field, we write nj = Nj/2πℓ

2,

where ℓ =
√
~c/eB is the magnetic length, and

Nj =
∑

a

[(
u2
ja + v2ja

)(
fa↑ + fa↓

)
− 1

p

]
, (1)

where {uja, vja} are the normalized wavefunction am-
plitudes for the u and v sublattice sites on layer j in
eigenstate a, and fσ = f(Ea + σωZ) is the Fermi func-
tion for electrons of spin polarization σ, with ωZ ≡
1
2gµBB and µB the Bohr magneton. The −1/p term

accounts for the ionic charge. We assume g = 2 and
do not account for any exchange enhancement of the g-
factor. We have 4πe2nj = rBNj , with r = 2e2/Bℓ2 =

0.437meV
/
T Å. The layer densities are then nj =

BNj · 2.419× 1010 cm−2/T.
If graphene contains charged impurities, the individual
layer charge densities can be modelled as ñj = nj +∆nj,
where ∆nj is the impurity charge density in units of
−e. These stray charge densities are not known a pri-

ori , but given the observed experimental offset voltage
∆Vg, an effective gate bias can be set as Vg + ∆Vg. As-
suming that the sample can be described by a single
capacitor plate located at a distance ds away from the
gate, then the corresponding stray charge density writes
∆n = κ1∆Vg/4πed1. In a multilayer sample, the distri-
bution of stray charge densities ∆nj is unclear, but we
find that our results are quite insensitive to their specific
rearrangement in between layers, although the best re-
sults are obtained for stray charges located on the top
layer.
By defining Uj ≡ −e φj, the final form of our self-
consistent equations for the trilayer is then

ζ − U1 + rB xs

(
Ñ1 + Ñ2 + Ñ3

)
= eVg (2)

U1 − U2 + rB x
(
Ñ2 + Ñ3

)
= 0 (3)

U2 + rB xÑ3 = 0 , (4)

where Ñj = Nj + ∆Nj , with ∆Nj = 2πℓ2∆nj , U0 =
ζ − eVg, and U3 ≡ 0. We have further defined x ≡ d/κ
and xs ≡ d1/κ1. The three unknowns are ζ, U1 and U2.
To solve these equations self-consistently (to an accuracy
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FIG. 2: (color online) Ball-and-stick model for a ABA and
ABC-stacked trilayer graphene (top panel), theoretical Lan-
dau level structure (middle panel) and quantized Hall resis-
tance (bottom panel) using : Vg = 50 V, VCNP = −13.75 V,
T = 4.2 K, W0 = 10 meV and g = 2. In the middle panel, the
solid and dashed curves indicate the Landau levels originating
from valleys K and K′, respectively. Bottom panel : experi-
mental (red line) and theoretical (black line) Hall resistance.

of 10−6), we use a modified Powell method subroutine,
HYBRD1, from the MINPACK library.
To model the effects of disorder, we replace the den-
sity of states D(E) =

∑
a δ(E − Ea) with D̄(E) =

1
2W0

∑
a Θ

(
W0 − |E − Ea|

)
, where Θ(x) is the Heaviside

function. We then replace the Fermi function f(E) with

f̄(E) =
1

2W0

W0∫

−W0

dW
1

e(E+W−ζ)/kBT + 1
(5)

= 1− kBT

2W0
ln

(
1 + e(E+W0−ζ)/kBT

1 + e(E−W0−ζ)/kBT

)
. (6)

Here W0 is the half-width of a square distribution.
The energy eigenvalues Ea are obtained from diagonal-
ization of the appropriate Hamiltonian for the trilayer.
We employ an SWMC tight-binding parametrization of
the local hopping amplitudes [12, 13]. There are two
possible stacking orders to consider: Bernal (ABA) and
rhombohedral (ABC), each illustrated in figure 2. For
the Bernal case, we take γ0 = 3000meV, γ1 = 400meV,

γ2 = −20meV, γ3 = 300meV, γ4 = 150meV, and γ5 =
38meV. In addition, there is an on-site energy shift of
1
2∆ = 18meV for each c-axis neighbor, as well as the self-
consistent local potential on each layer. For the rhom-
bohedral case [14, 18], the parameter γ5 does not enter.

At wavevector ~k, the in-plane component of the hopping

leads to a Wallace factor of S(~k) = ei
~k·~δ1 + ei

~k·~δ2 + ei
~k·~δ3 ,

or of S∗, where ~δ1,2,3 are the three nearest-neighbor sep-
arations. Expanding about the two inequivalent zone

corners, one finds S( ~K + ~q ) = −
√
3
2

(
qx + iqy

)
a0 and

S( ~K ′ + ~q ) = S∗( ~K − ~q ) =
√
3
2

(
qx − iqy

)
a0, where

a0 = 2.46 Å. In the presence of a magnetic field, we have

~q → ~q + e
~c

~A ≡ 1
~
~π, where [πx , πy ] = −i~2/ℓ2, assuming

~B is along ẑ. We then define cyclotron ladder operators b

and b† according to b = ∓(πx− iπy)ℓ/
√
2~ at ~K (−) and

~K ′ (+). This results in S → ξb† near ~K and S → ξb near
~K ′, where ξ =

√
B/B0 and B0 = φ0/3πa

2
0 = 7275T,

where φ0 = hc/e is the flux quantum. The Hamiltonian
is written as an infinite rank matrix in Landau level index
space. The results are obtained using a cut-off of the Lan-
dau level index of 300 (see [29]). The theoretical results
for Rxy were obtained by assuming that there is a unique
critical energy at the center of each disorder-broadened
Landau level where extended states exist. The Hall con-
ductivity changes by ∆σxy = e2/h as the electrochemical
potential sweeps through these energies. When Zeeman
splitting is neglected, ∆σxy = 2e2/h.

Results – Figure 2 shows the LL energies and theoreti-
cal Hall resistance for both ABC and ABA stacking for
gate voltage Vg = +50V, along with the experimental
results for Rxy (the full set of IQHE data is reported
in the supplementary information [29]). For fields up to
40T, the measurements agree fairly well with the theo-
retical predictions for the ABC trilayer, and fail to repro-
duce the theoretical Hall plateau sequence for the ABA
trilayer. The different plateau sequences for ABC and
ABA trilayers arise due to the significant differences in
their respective Landau level structures, as seen in figure
2. Indeed, the rhombohedral stacking order accounts for
the absence of Hall plateaus at some filling factors, like
ν = 4, 8, 12... due to valley degeneracy arising from the
inversion symmetry of the honeycomb lattice. In absence
of bias voltage, the ABC trilayer is inversion symmetric
but lacks mirror symmetry as compared to the ABA tri-
layer [19]. The presence of an electric field across the
graphene layers, due to the gate voltage induced charge
redistributions [20, 22], breaks the lattice inversion sym-
metry. Neglecting Zeeman splitting, quantum Hall steps
of amplitude ∆σxy = 2.e2/h should be observed for each
plateau-to-plateau transition. This holds in particular for
the Bernal type of stacking as the LLs originating from
valleys K and K ′ are quite distinct from each other due
to the absence of inversion symmetry. On the other hand,
the ABC-stacked LL band-structure is much less affected
by electrostatic effects. At high enough magnetic field,
the LLs evolve roughly by bunches of four and, when



4

B=0T

FIG. 3: (color online) a) Longitudinal resistance as a function
of carrier concentration at 4.2K. b) Hall resistance for various
back gate voltage in vicinity of the CNP. Notice that the
Hall resistance tends to vanish at Vg ≈ VCNP and very high
magnetic field. For Vg ≫ VCNP, the expected quantum Hall
effect in graphene trilayer is recovered.

disorder effects are taken into account, lead to quantum
Hall steps of ∆σxy = 4.e2/h, as experimentally observed.
Intriguingly, the IQHE fails to be reproduced at very low
filling factor (high magnetic field and low carrier density).
To further investigate this issue, we analyze the Hall re-
sistance for various charge carrier concentrations close to
CNP. Focusing at figure 3-b, we begin the analysis with
the Hall resistance for Vg = +40V (n = 4.3×1012 cm−2),
which displays well defined quantized Hall plateaus. As
the gate voltage is decreased, the Hall resistance plateaus
are shifted at lower magnetic field as expected theoreti-
cally. On the other hand, as the Fermi energy is driven
closer to CNP, the low field Hall effect is no longer linear
reflecting the presence of electrons and holes that both
contribute to transport. For Vg < +20V, the initial ra-

tio between electron/hole density evolves as the magnetic
field is increased to accommodate the field-induced re-
distribution of quantum states available in the lowest LL
[23]. Actually, the electron and hole densities tend to
equilibrate and consequently the Hall resistance vanishes
at high field. This effect is a hallmark of the disordered
2DEG [24], where the presence of electron and hole pud-
dles allows both types of carriers for a given Fermi energy
close to CNP. The theoretical model presented earlier
does not take into account such effects and therefore is
not appropriate to describe the low-filling factor regime
(ν < 6).

Conclusion – A new form of IQHE in a gated trilayer
graphene has been observed. The filling factor sequence
associated with the quantized Hall resistance plateaus is
identical to that for graphene, but the plateau at ν = 2
is missing. The experimental data are supported by a
theoretical analysis which suggests that the measured
trilayer sample has a rhombohedral stacking. The
comparison with samples with higher mobility, e.g. in
suspended or boron nitride-deposited graphene trilayers
will be very interesting [10].
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