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Effects of Berry phase and instantons in one dimensional Kondo-Heisenberg model
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Motivated by the global phase diagram of antiferromagneticheavy fermion metals, we study the Kondo effect
from the perspective of a nonlinear sigma model in the one dimensional Kondo-Heisenberg model away from
half-filling. We focus on the effects of the instanton configurations of the sigma-model field and the associated
Berry phase. Guided by the results derived using bosonization methods, we demonstrate that the Kondo singlet
formation is accompanied by an emergent Berry phase. This Berry phase also captures the competition between
the Kondo singlet formation and spin Peierls correlations.Related effects are likely to be realized in Kondo
lattice systems in higher dimensions.

Introduction:Antiferromagnetic heavy fermion metals rep-
resent a prototype case study for quantum criticality [1].
Considerable theoretical work has emphasized the Kondo-
breakdown local quantum criticality [2, 3]. Compared with
the spin-density-wave picture [4–6], which is based on the
Landau notion of order-parameter fluctuations, the Kondo
breakdown introduces new low-energy degrees of freedom.
The characteristic properties include,e.g., a jump between
large and small Fermi surfaces [7, 8].

Recently, experiments in YbRh2Si2 that is either doped
[9, 10] or pressurized [11] have revealed a rich phase dia-
gram. Under sufficient positive or negative (chemical) pres-
sure, the Kondo-breakdown point can be separated from the
antiferromangetic (AF) transition. These results have been in-
terpreted in terms of a global phase diagram, which was put
forward several years ago and more extensively discussed re-
cently [12–14].

The global phase diagram emphasizes the interplay be-
tween two effects. One is the Kondo screening and its break-
down, and the other the fluctuations in the quantum mag-
netism of local moments alone. The relevant zero-temperature
phases can be either AF or paramagnetic, and can have “large”
or “small” Fermi surfaces [12–14]. The large and small Fermi
surfaces respectively correspond to the cases with Kondo
screening and destruction. These results promise to take the
study of heavy fermion phase diagram to an entirely new di-
rection [1].

A promising approach to the global phase diagram starts
from the AF state, using a quantum non-linear sigma model
(QNLσM) representation [13, 15]. In dimensions higher than
one, the Kondo coupling turns out to be exactly marginal in
the renormalization group (RG) sense, and this shows a sta-
ble AF phase with Kondo destruction. Such a phase serves as
a basis to describe different types of phase transitions outof
the AF state [12, 13]. The low-energy physics in the ordered
state involves only the smooth space-time configurations of
the sigma model fieldn, for which the spin Berry phase van-
ishes. In order to access the Kondo-screened or otherwise
paramagnetic phases, topologically non-trivial configurations
of then field will also be important; for such configurations,
the spin Berry phase is non-zero.

To gain insight into the effect of the Berry phase on the
zero-temperature phases of Kondo lattice systems, here we

consider the case of AF spin-1/2 Kondo-Heisenberg model in
one dimension. We use the QNLσM basis to study the effect
of topological spin excitations, with important guidance pro-
vided by the results derived from bosonization method. We
show that, when the conduction electron moves in the topo-
logically nontrivial instanton configurations of then fields, a
Berry phaseθ term withθc = π arises. The emergent Berry
phase shifts theθ term of the spin chain fromπ to 0[mod 2π],
which in turn gives rise to a spin gap that is characteristic
[16–18] of the Kondo-screened state of the one-dimensional
Kondo-Heisenberg lattice. Our results apply to both the in-
sulating case at half-filling, where they are consistent with
the result of Tsvelik [19], as well as the metallic case away
from half-filling. As we discuss at the end of the paper, our
results bring out considerable new insights into the Kondo-
breakdown phenomena.

Kondo-Heisenberg model and QNLσM mapping:We study
the following one dimensional Hamiltonian

H = −t
∑

i,α

c†i,αci+1,α + h.c.+ JK
∑

i

si · τ i

+JH
∑

i

τ i · τ i+1, (1)

where the fermion spins and spin-half local moments are re-
spectively described bysi = 1

2c
†
i,ασαβci,β , and τ i. The

Kondo (JK) and nearest neighbor (JH ) exchange couplings
are both antiferromagnetic, andt is the fermion hopping
strength. We will work in the regimeJK ≪ JH , t, where
we can use a continuum approximation for the spin chain.
For the latter, we first consider the semiclassical QNLσM
mapping[20], followed by the bosonization method[21, 22].

In the semiclassical approximation we takeτ i =

(−1)iSni(1 − a2
L

2

i

S2 )1/2 + aLi, where the unit vector field
ni is the staggered magnetization, andLi is a canting field
that satisfies the constraintni · Li = 0. After integrating out
Li we obtain the effective actionSeff = S[n] + Sf + SK .
The three terms respectively describe the QNLσM for the lo-
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cal moments, the free electrons, and the Kondo interactions:

S[n] =
ρs
2

∫

d2x[(∂1n)
2 +

1

c2
(∂0n)

2] + iθW [n] (2)

Sf =

∫

d2xψs[γ0∂0 + vγ1∂1]ψs (3)

SK =

∫

d2x

[

λbe
−iπrjψe−i2kF rjγ5

σψ · n

+iλfψγ0σψ · (n× ∂0n)

]

+ . . . (4)

In Eq. 2,ρs = JHS
2a, c = 2JHSa respectively denote the

spin stiffness and spin-wave velocity. The topological term
iθW [n] corresponds to the Berry’s phase due to the instanton
configurations ofn, with θ = 2πS, and the Pontryagin index
W [n] = 1

4π

∫

d2x n ·(∂xn×∂0n) counts the winding number
of the instantons. In the semiclassical approximation onlythe
Berry’s phase term retains the information about the quantized
value of the spin. Based on this mapping, Haldane conjectured
that half-integer spin chains characterized byθ = π are gap-
less, and in contrast the integer spin chains withθ = 2π are
gapped[20]. In Eqs. 3,4,v is the Fermi velocity,kF is the
Fermi momentum, and the anticommuting gamma matrices
areγ0 = η1, γ1 = η2 andγ5 = iγ0γ1 = −η3, with ηi’s being
Pauli matrices. These Pauli matrices operate on the fermionic
spinorψ† = (R†, L†), whereR andL are the right and left
moving fields, and̄ψ = ψ†γ0.

The two terms in Eq. 4 with coupling constantsλb andλf
respectively correspond to the back scattering and forward
scattering interactions between the fermions and local mo-
ments; both are∝ JK . The ellipsis indicates a four-fermion
interaction term, obtained after integrating outLi, that is not
important for our purpose. The back scattering term describes
the coupling of the staggered magnetization densities of the
electrons and spin chain, and the forward scattering term de-
scribes the coupling of the uniform magnetization densities.
At half-filling, the product of the exponential phase factors is
unity due to the commensurability of the conduction electrons
and spin chain, and the back scattering term contributes as a
relevant operator. Away from half-filling, the product is oscil-
latory in space, which makes the back scattering term irrele-
vant and the low energy physics is governed by the forward
scattering term.

Bosonization results: Before proceeding with the calcu-
lations within the QNLσM approach, we will use bosoniza-
tion method to gain insight into the Kondo singlet formation
[17, 18] and the emergent Berry phase. We show that the
abelian-bosonization description of the Kondo-singlet state,
when transformed in terms of a non-abelian bosonization
method, already suggests an emergent Berry phase.

In the bosonization approach the spin chain is first de-
scribed in terms of fermionsΨ with frozen charge fluctua-
tions, and the Kondo interaction term is expressed as

SK =

∫

d2x[λbψe
−i2kF rjγ5

σψ ·Ψe−iπrjγ5
σΨ

+λfψγ0σψ ·Ψγ0σΨ]. (5)

Within the Abelian bosonization, the collective charge and
spin fluctuations of the electrons are respectively described by
the bosonic fieldsϕc, ϕs and their corresponding dual fields
θc, θs. The spin fluctuations of the local moments are de-
scribed by the bosonic fieldϕτ and its dualθτ . The kinetic
energy of the fermions are described in terms of Gaussian ac-
tions involvingϕc, ϕs, andϕτ , andSK becomes

SK ∝
∫

d2x

[

λb cos((2kF + π)rj +
√
2πϕc)(cos

√
2πϕ−

− cos
√
2πϕ+ + 2 cos

√
2πθ−) + λf∂xϕs∂xϕτ

+λf cos
√
2πθ−(cos

√
2πϕ− + cos

√
2πϕ+)

]

, (6)

whereϕ± = ϕs ± ϕτ andθ− = θs − θτ .
Away from the half filling, the low energy physics is con-

trolled by the forward scattering term that is marginally rele-
vant [18] . (Thecos

√
2πθ− cos

√
2πϕ− coupling is irrelevant

and can be ignored.) Since the forward scattering operators
do not couple the charge and spin sectors, the charge field re-
mains a free field and leads to the metallic behavior in the
charge sector. However the spin fields still satisfy one of the
following locking conditions:

√
2πϕ+ = 2n1π,

√
2πθ− = (2n2 + 1)π (7)√

2πϕ+ = (2n1 + 1)π,
√
2πθ− = 2n2π, (8)

which signals the Kondo singlet formation and an emergent
spin gap [17, 18, 23]. As a result of the Kondo singlet
formation there is a gapless charge density wave mode at
wavevector2k∗F = 2kF + π, described by〈Nτ · Ns〉 ∝
cos

(

(2kF + π)rj +
√
2πϕc

)

.
The above can be compared with the insulating system at

half filling, where the back scattering and forward scattering
operators are respectively relevant and marginally relevant op-
erators. Consequently[16–18], the low energy physics is gov-
erned by the back scattering term, a potential energy of the
form N

τ · Ns, whereNs,τ are the staggered magnetization
densities. This form implies that the spin fields will lock into
a configuration such thatNτ · Ns = −1. Combining the
energy minimum criterion with the fact thatcos

√
2πϕ− and

cos
√
2πθ− can not have simultaneous vacuum expectation

values, we find two possibilities for the charge and spin fields,
either with Eq. (7) and

√
2πϕc = 2n3π, or with Eq. (8) and√

2πϕc = (2n3 + 1)π. The nonzero〈cos
√
2πϕc〉 causes a

charge gap, leading to a charge insulator behavior. In the spin
sector, the above reveals an important insight, which appears
not to have been appreciated before: the locking conditions
for the spin bosons in the half-filled insulating case and away-
from-half-filled metallic cases are identical. This insight will
be important in guiding our subsequent analysis of the Berry
phase effect in the QNLσM representation.

To anticipate the QNLσM analysis, we now demon-
strate the relation between the Kondo singlet formation and
topological Berry phase using the non-Abelian bosonization
method[21, 22]. The spin sector for the electrons and local
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moments are described by theSU(2) matrix fieldsUs,τ and
the correspondingSU1(2)-WZW actions

Ss,τ =
1

16π

∫

d2xTr[∂µU†
s,τ∂µUs,τ ] + ΓWZ [Us,τ ]

ΓWZ [Us,τ ] =
−i
24π

∫ ∞

0

dξ

∫

d2xǫαβγTr[U†
s,τ∂αUs,τ

U†
s,τ∂βUs,τU†

s,τ∂γUs,τ ] (9)

whereΓWZ is the topological Wess-Zumino term. For the
electrons and local moments the space-time coordinates are
respectively described by(vs,τx0, x1). The topological WZ
term is crucial to maintaining the gapless behavior of the
Us,τ fields. The matrix fields can be decomposed asUs,τ =
u0,s,τ + ius,τ · σ, with u20,s,τ + u

2
s,τ = 1, whereu0,s,τ , and

us,τ respectively describe singlet spin-Peierls and staggered
magnetization correlations. The relationship among the non-
Abelian and Abelian bosonization fields are described by

u0,s ± iu3,s = e±i
√
2πφs , u1,s ± iu2,s = ±ie∓i

√
2πθs

(10)

The locking conditions of the Abelian fields, Eqs. (7,8), trans-
late into Us = ±U†

τ . Using the propertyΓWZ [U†] =
−ΓWZ [U ], we find that the Kondo-singlet formation is ac-
companied by the cancellation between the WZ terms of the
spin chain and the electrons. This leaves an effective matrix
sigma model without the topological term, which is known to
be gapped. If the Peierls type singlet correlationu0 is sup-
pressed, the WZW action reduces to a QNLσM, and the WZ
term transforms into a topologicalθ = π Berry phase for the
QNLσM. Therefore we anticipate that the Kondo singlet for-
mation within a sigma model approach will be associated with
an emergentθ = π Berry phase from the electronic part of the
action.

QNLσM at half-filling : After gaining insight into the
Kondo-singlet formation via bosnization analysis, we turnto
the QNLσM approach. At half-filling the problem can be
solved in an elegant manner due to Tsvelik[19]. Introducing
the non-Abelian bosonization fieldUs for the conduction elec-
trons, the relevant back scattering term can be expressed as
4λbus·n cos

√
2πϕc. The energy minimization is achieved for

us = n,
√
2πϕc = (2n + 1)π or us = −n,

√
2πϕc = 2nπ.

The conditionsus = ±n imply u0,s = 0, and the WZ term
becomes±iπW [n] which cancels theθ = π Berry phase term
of the spin chain. Consequently we obtain charge and spin
gaps. However this approach does not account for the for-
ward scattering terms and can not be applied to the metallic
case away from half filling, where a new treatment is required.

Berry’s phase from non-Abelian chiral anomaly:We now
analyze the Kondo effect and emergent Berry phase in the
QNLσM representation at arbitrary filling. Based on the
bosonization results, we see that Kondo singlet formation is
accompanied by the2k∗F charge density wave oscillation de-
scribed by〈Ns ·Nτ 〉. Therefore in the sigma model approach
we need to find an appropriate fermionic basis such that the

component ofNs parallel ton has2k∗F charge oscillation
(at half-filling due to commensurability2k∗F charge mode re-
mains gapped).

Recognizing thatNs contains the combination of left and
right moving fields, we anticipate that a spin dependent chi-
ral transformation will be needed to describe the appropriate
fermionic basis. In the following section we demonstrate that
both at and away from half-filling the emergent Berry’s phase
can be calculated by using a non-Abelian chiral rotation and
the associated chiral anomaly [24–26]. In Ref. 26 the non-
Abelian chiral rotation technique has been applied to calculate
the Berry phase at half-filling in the absence of the forward
scattering term. However the relation between the emergent
Berry phase and Kondo singlet formation has not been ad-
dressed. We consider this relationship and, in addition, study
the forward scattering term to address the metallic case away
from half-filling.

We perform a spin-dependent chiral rotationψ →
exp(iφn · σγ5)χ. The staggered magnetization transforms
into

ψe−i2kF rjγ5
σ

2
ψ =

1

2
χ̄[σ − n(1− cos 2φ)n · σ

+iγ5 sin 2φn]e
−i2kF rjγ5χ (11)

After taking a dot product withn, we find that only forφ =
±π/4, Ns · n demonstrates pure charge density oscillations
with 2k∗F wavevector. Thereforeφ = π/4 is the required
chiral rotation angle, which removes the spin dependence of
the back scattering term and converts it intoiλb exp(−iπrj −
2ikF rjγ5)χ̄γ5χ. Therefore at half-filling, the back scattering
term becomesiλbχ̄γ5χ, and causes a charge gap. One can
also perform a successiveU(1) chiral rotationexp(−iπ4 γ5)χ,
to transformiχ̄γ5χ into a ordinary mass termλbχ̄χ. However
this is not necessary for the physics in the spin-sector.

Since the functional measure is not invariant under chiral
rotation, we need to find the Jacobian of the transformation
which leads to the chiral anomaly terms. After an explicit
calculation detailed in the supplementary materials [27],we
find the Jacobian

J
(

φ =
π

4

)

= exp

[

− iπW [n] +

∫

d2x

{

v

4π
(∂1n)

2

+
(1− 2λf )

2

4πv
(∂0n)

2

}]

(12)

The Jacobian consists an emergentθ = π Berry phase term,
and two additional terms which renormalize the spin stiffness
and spin wave velocity of the QNLσM. The emergent Berry
phase cancels the existingπ Berry phase of the spin chain,
and renders the sigma model field gapped. As a result of the
π/4 chiral rotation, the spin sector of theχ fermions also be-
comes gapped. This can be demonstrated by considering the
bosonization of theχ fermions. In the non-abelian bosoniza-
tion formulation, the spin sector of theχ fermion does not
contain the topological WZW term, and the matrix sigma
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model becomes gapped. The fermionic action transforms into

Sf =

∫

d2xχ̄[γµ∂µ +
i

2
γµγ5σ · ∂µn+

i

2
γµσ · (n× ∂µn)

−iλfγ0γ5σ · ∂0n+ iλbe
−i(π+2kF )rjγ5γ5]χ+ . . .

(13)

Since then field, and the spin sector ofχ field are gapped, the
interaction between these fields describe the innocuous fluc-
tuations about Kondo singlet phase.

To summarize, the spin dependent chiral rotation by angle
π/4 incorporates the Kondo singlet formation. In the metallic
case away from half-filling, aθ = π Berry phase emerges
as a consequence of chiral anomaly. The effects of the Berry
phase and instantons in the spin sector turn out to be the same
as those at half-filling. The difference between the two cases
exists only in the charge sector, and the term causing the gap
at half-filling no longer operates away from half-filling.

Competition with spin-Peierls correlations:The emer-
gent theta term highlights the role of instanton configurations
of then field. We now discuss its connection with the spin-
Peierls order parameter. In the semiclassical language spin
Peierls order parameter(−1)i〈Si·Si+1〉 corresponds to the in-
stanton densitya2n · (∂xn× ∂0n). Therefore it can be argued
that the instantons of the sigma model are manifestations of
the competition between the spin Peierls and Néel order. For
the spin one-half case we consider,θ = π and the gapless-
ness of the spin chain implies the same power law correlation
of the Peierls and the Néel order parameters. The Kondo sin-
glet formation is detrimental to both singlet Peierls and triplet
Néel correlations, as the system moves away from the gapless
point; this competition between two types of singlet correla-
tions is encoded in the emergentπ Berry phase term.

This conclusion demonstrates the effect of the emergent
Berry phase beyond the description of how Kondo-singlet
paramagnetic phase transitions out of a Kondo-breakdown
spin-liquid reference point. The Berry phase also charac-
terizes the competition between the Kondo paramagnet and
Kondo-breakdown spin-Peierls phase. While the Fermi mo-
menta of the Kondo-singlet paramagnet are large, those of
the spin-Peierls state are small. These paramagnetic phases
and their transitions resemble the paramagnetic portion of
the global phase diagram that has been proposed for heavy-
fermion metals.

In higher dimensions there is a stable Néel ordered AF state,
and the instantons are suppressed by finite spin stiffness inthe
magnetically ordered phase. However in the quantum disor-

dered region the consideration of the instantons becomes rele-
vant, and the associated Berry phase is critical in determining
the nature of the emergent valence bond solid phase[28, 29].
Therefore it is conceivable that Berry phase effects related to
what we have considered here will be important in dimensions
higher than one.

We acknowledge the support of NSF Grant No. DMR-
1006985, the Robert A. Welch Foundation Grant No. C-1411,
and the W. M. Keck Foundation.

[1] Q. Si and F. Steglich, Science329, 1161 (2010).
[2] Q. Si, S. Rabello, K. Ingersent, and J. Smith, Nature413, 804

(2001).
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