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Abstract 
 
We report in this Letter our recent low temperature transport results in a Si/SiGe quantum 

well with moderate peak mobility. An apparent metal-insulating transition is observed. 

Within a small range of densities near the transition, the conductivity σ displays non-

monotonic temperature dependence. After an initial decrease at high temperatures, σ first 

increases with decreasing temperature T, showing a metallic behavior. As T continues 

decreasing, a downturn in σ is observed. This downturn shifts to a lower T at higher 

densities. More interestingly, the downturn temperature shows a power law dependence 

on the mobility at the downturn position, suggesting that a similar downturn is also 

expected to occur deep in the apparent metallic regime at albeit experimentally 

inaccessible temperatures. This thus hints that the observed metallic phase in 2D systems 

might be a finite temperature effect.  
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The physical properties of two-dimensional (2D) electrons have been a subject of 

interest for many years. Yet after years of research, the ground states of a 2D electron 

system (2DES) in the presence of disorder and electron-electron interaction, a realistic 

situation in experiments, remain an open question. Based on scaling arguments, 

Abrahams et al showed that an arbitrary amount of disorder is sufficient to localize all 

non-interacting 2D electrons [1]. This conventional wisdom was challenged, especially in 

1994, when Kravchenko et al. reported the observation of a sharp drop of resistivity (ρ) 

with decreasing temperature (T) in a high mobility silicon metal-oxide-semiconductor 

field-effect transistor (Si-MOSFET) and proposed a possible metal-insulator transition 

(MIT) in the strongly interacting regime, characterized by the condition of rs >>1, where 

rs is defined as the ratio of the Coulomb energy to the Fermi energy EF of the 2DES [2]. 

Soon after the report by Kravchenko et al., similar phenomena, with differences in details, 

were observed in 2DESs in various semiconductor epitaxial heterostructures. [3-5] 

 

The apparent violation of the scaling theory has led to much theoretical and 

experimental research aiming at understanding the metallic conduction and the MIT. 

Though to date no consensus has been reached [6], it has become clear that the interplay 

between electron-electron interaction and disorder plays an important role in the observed 

apparent MIT. In particular, recent observations of a downturn in conductivity at low 

temperatures in Si-MOSFETs [7,8] and 2D holes in GaAs [9-11] seem to suggest that 

disorder plays an important role in the phenomenon and at T = 0 2DES may eventually be 

insulating.   

 

In this Letter, we report a quantitative study of this downturn in conductivity in a 

Si/SiGe quantum well (QW) from T = 10 K down to dilution refrigerator temperatures. 

The peak mobility in this structure is 1.7×104 cm2/Vs at electron density n = 1.4×1011 cm-

2 and, in spite of this low mobility, low-temperature transport measurements can be 

carried out to ~ 1010 cm-2 range. This combination of relatively low mobility and density 

allows us to observe the downturn in conductivity and to probe the transport properties in 

the diffusive regime within experimentally accessible range of T. It was observed that the 

temperature at which the downturn occurs shows a power law dependence on the 
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mobility (μ) at the downturn position, indicating that a similar downturn is also expected 

to occur in the apparent metallic regime at albeit inaccessible temperatures. This thus 

suggests that the observed metallic phase in 2D systems may be a finite temperature 

effect and, at T = 0, the ground state is insulating. We also present quantitative 

comparisons to the theory of interaction corrections by Zala et al. [12] and the scaling 

theory by Punnoose et al. [13] 

 

The material used was a modulation-doped Si/SiGe QW grown by molecular-beam-

epitaxy [14]. Ohmic contacts were formed by alloying AuSb into the heterostructure. The 

electron density n was tuned by biasing the front gate, which consists of a stack of Al2O3, 

Cr, and Au. Low-temperature transport experiments were performed using standard lock-

in techniques with excitation current as low as 100 pA at frequency as low as 1 Hz. Data 

between T = 0.3 K and T = 10 K was taken in a 3He cryostat, and data at lower T was 

acquired in a dilution refrigerator.  Two samples were examined in four cool-downs. The 

results from these two samples are consistent with each other. In the following, detailed 

data from one sample will be reported.  

 

Figure 1(a) displays σ(T) of the 2DES from T = 0.3 K to T = 10 K in the 1× 1011 cm-2 

regime, in which the ratio of the Coulomb energy to the Fermi energy is ~10. The Fermi 

temperature TF and the ballistic-diffusive crossover temperature ħ/πkBτ, estimated from 

the conductivity at T = 0.3 K, are also marked in the plot. For the region where T << 

ħ/πkBτ the 2DES is in the diffusive regime, which constitutes the major part of the data. 

At first glance the transport characteristics across the MIT appear similar to what have 

been observed in other Si systems [2, 15]. At high n (n ≥ 1.28×1011 cm-2) σ increases 

monotonically with decreasing T, while at low n (n ≤ 0.89×1011 cm-2) dσ/dT > 0. At 

intermediate n, σ is non-monotonic, decreasing with decreasing T at high T, reaching a 

minimum at a characteristic temperature TE1, and increasing upon further cooling. The 

minimum shifts to higher T at higher n and weakens in strength, and eventually σ(T) 

becomes monotonic. 
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Closer examination of the data, however, reveals several features worth careful 

consideration. We first notice that in a small range of n at which σ(T) is non-monotonic, 

an additional extremum is observed at low T and the 2DES turns insulating (dσ/dT > 0) 

below a n-dependent downturn temperature TE2. The second feature worth noting is that σ 

shows an approximately linear dependence on T at T ~ TF across the transition. Lastly, 

deep in the metallic side, σ keeps increasing with decreasing T in the diffusive regime, 

showing no sign of saturation. Each of these characteristics is discussed in the following. 

 

The curves near the MIT are magnified and shown in Fig. 1(b), where TE1 (TE2) are 

marked by the upwards (downwards) arrows. For the curves shown in red, the 2DES 

exhibits a reentrant behavior upon cooling, being insulating above TE1, metallic at 

intermediate T, and insulating below TE2. At higher or lower n this behavior is not 

observable. The n dependence can be seen more clearly in a phase diagram plot of T and 

n, which is obtained from the sign of dσ/dT and is shown in Fig. 2. Also shown in the 

diagram are TF and TD = ħ/πkBτ. As discussed above, TE1 moves to higher T at higher n, 

approximately following TF. On the other hand, TE2 shifts to lower T as n is increased, 

similar to ħ/πkBτ. Extrapolating this trend to higher n would then imply an insulating 

behavior at low enough T.  

 

We have also examined σ(T) in the same specimen down to dilution refrigerator 

temperatures. TE2 in this cool down shifts to lower T with increasing n. In Fig.3a, TE2 

from the two sets of data is plotted as a function of n. Overall the trend that TE2 shifts to a 

lower temperature at higher densities is the same for the two cool downs. The 

disagreement from the same sample in the two cool-downs is attributed to slightly 

different disorder configurations from one cool down to the other. In Fig.3b, TE2 is 

plotted as a function of μ(T=TE2), the mobility where the downturn occurs. Surprisingly, 

the two sets of data collapse onto a single curve with TE2 decreasing with increasing μ 

(T=TE2), or in turn, τ. A power law fit shows that TE2 approximately scales as TE2 ∝ μ-2.2.  

 



 5

 The downturn behavior was observed in other Si/SiGe QW samples, for example, one 

with a similar growth structure and sample quality examined in this work and one 

reported in Ref. [5]. TE2’s in these samples are also included in Fig. 3(b) and in the inset. 

We shall note here that, though the downturn occurs at a relatively high density 

(n=4.05×1011 cm-2) in Ref. [5], yet in the plot of TE2 vs μ(TE2) their result is in fairly good 

agreement with the two other samples we looked at.  

 

Similar decrease in conductivity with decreasing T at low temperatures on the 

metallic side has also been observed in different material systems (for example, in Si-

MOSFETs [7,8] and  in dilute 2D hole systems in GaAs [9-11]), and was taken as 

evidence of the onset of weak-localization. However, we want to caution that in the 

experiments on 2D holes in GaAs and in one experiment on Si-MOSFET, the 2D 

conductivity is much larger than e2/h, while in our case the downturn occurs in the regime 

where σ ~ e2/h. Thus, it is unclear whether these qualitatively similar phenomena in 

different regimes are of the same origin. 

 

We emphasize here that in the transition regime where TE1 and TE2 coexist the 

conductivity is of the order of e2/h, indicative that both electron-electron and electron-

disorder interactions are important. In the following, we propose to understand the 

existence of TE2 under the picture of a recently proposed micro-emulsion model [6]. 

Within this model, the strongly interacting electron system consists of two components, 

Wigner crystallites dispersed into a Fermi liquid. The resistivity of 2DES is proportional 

to the viscosity of this micro-emulsion. For temperatures not too low, lowering 

temperature actually helps to reduce the percentage volume of the crystallites. This 

counter-intuitive behavior can be understood as follows. The Winger crystal state is 

determined by the free energy, F = E-TS, where E is the energy at T = 0, and S is the 

entropy. Lowering T increases its free energy and helps to destabilize Wigner crystal state. 

In other words, the crystal melts as T is lowered. Due to this reduction of crystallites, 

micro-emulsion becomes less viscous. The 2DES resistivity thus decreases, or its 

conductivity increases, upon cooling. As T is further decreased, a counter transition to the 

melting of the crystallites can now occur and the percentage volume of the pinned 
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Wigner solid increases. It can be imagined that these two processes may reach a balance 

at TE2 when the conductivity reaches a maximal value. For T < TE2, the process of 

forming a highly disordered Wigner solid prevails and the 2DES conductivity decreases 

with decreasing T. The above scenario can qualitatively explain several features on TE2. 

First, in high mobility samples, there are less pinning centers. As a result, the balance 

point, or TE2, has to be shifted to lower T, consistent with what we observed. Second, 

disorder potential varies from one sample to another. For example, in Si-MOSFETs 

electron wavefunction is close to the interface between Si and SiO2 and the 2DES 

experiences mostly scattering by surface roughness and interface charges. In Si/SiGe 

QWs, the carriers are from the modulation doping and surface roughness scattering is 

reduced. The 2DES experiences mostly the disorder potential due to the modulation 

doping impurities and dislocation defects at the interface due to the Si and SiGe lattice 

mismatch. This difference in the nature of disorder is expected to affect the pinning 

strength and thus the power-law exponent. Indeed, a power-law dependence of TE2 also 

exists in data obtained in the high quality Si-MOSFET [7], with a power law exponent of 

~1, different from our results.  

 

At the present time, our data does not allow us to definitively pin down the nature of 

the insulating phase at T = 0. In the paper by Prus et al [7], the downturn was attributed to 

both the weak-localization interference and Coulomb interaction effects. In our 

experiment, the conductivity downturn occurs at lower densities in the transition region 

where the weak-localization was shown to be strongly suppressed [16]. We thus propose 

that the insulating phase in our sample is of strong electron-electron interaction origin. 

One such candidate, for example, is the insulating Wigner glass state which has been 

proposed as a T = 0 ground state at intermediate carrier concentration in the presence of 

disorder [17]. Of course, more experiments are needed to verify whether this Wigner 

glass phase is responsible for the observed insulating behavior for T < TE2.  

  

We now turn our attention to σ(T) deep in the metallic regime where σ >> e2/h. At the 

highest n, σ increases with decreasing T and does not show sign of saturation even when 

T << ħ/πkBτ, as shown in Fig. 1(a). In Fig. 4(a) and (b) we show σ(T) at n = 1.4 × 1011 
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cm-2 in linear-T and log-T scales, respectively. At high T (T > 0.3 K), σ increases linearly 

with decreasing T, as shown in Fig. 4(a). Upon further cooling, σ increases even faster 

than the linear dependence and approximately follows a log-T dependence, as shown in 

Fig. 4(b). Such strongly enhanced metallic behavior in the diffusive regime is not 

observed in Si-MOSFETs, which show saturation of σ at dilution refrigerator 

temperatures [18]. It was shown by Zala et al. that in the ballistic regime, the correction is 

linear in T, while in the diffusive regime the correction is logarithmic [12]. The sign and 

magnitude of the correction depends on the strength of electron-electron interaction, 

characterized by the parameter Fσ
0. Extrapolating the linear portion of σ(T) to T = 0 gives 

the conductivity from which we calculate the ballistic-diffusive crossover temperature, ~ 

0.1 ħ/kBτ [19], marked by the green bar in Fig. 4. The value of Fσ
0 can be obtained from 

the slopes of σ(T) at high T and σ(log-T) at low T. The so determined values of Fσ
0 in the 

ballistic regime and the diffusive regime are -0.15 and -0.31, differing by a factor of two. 

Considering the contribution of weak localization, which also shows a logarithmic 

correction, makes this discrepancy even larger. We note that different Fσ
0 values in 

different regimes (i.e., diffusive vs ballistic) have also been reported before, for example, 

by Renard et al in Ref. [19]. 

 

Before we conclude this paper, two remarks are in order. First, near the MIT, σ 

increases with T in an approximately linear fashion at T ~ TF. Different from previous 

studies, dσ/dT in this sample displays non-monotonic density dependence with a broad 

peak and the peak value is ~ 0.03 e2/h per Kelvin at n ~ 1×1011 cm-2. This peak value is 

much smaller than that observed in other high mobility 2DESs [20,21]. Currently there is 

no quantitative description of this regime where electrons strongly interact and T ~ TF ~ 

ħ/πkBτ. Our data suggests that while qualitatively similar phenomena are observed in 

both high mobility and low mobility 2DESs, disorder play an important role in a 

quantitative model.  

 

Second, we have also compared our data with scaling theory by Punnoose et al. which 

was developed for the diffusive regime and shown to describe ρ(T) of 2DESs in Si-
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MOSFETs near the MIT quantitatively by a universal function without any adjustable 

parameters [13,22]. Our data, however, cannot be collapsed onto the universal function 

even if we focus only on the curves with the maximal ρ < πh/e2, as required by the theory. 

We thus conclude that the universal function does not quantitatively describe our 

experimental data.  
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Figure Captions:  

 

Figure 1 (Color) (a) σ in units of e2/h as a function of T from 0.3 to 10 K. The electron 

densities from top to bottom are 1.35, 1.28, 1.23, 1.18, 1.11, 1.08, 1.06, 1.04, 1.015, 

1.006, 0.976, 0.959, 0.040, 0.927, 0.897, 0.890, 0.878, 0.876, 0.874 × 1011 cm-2. The blue 

(green) bars mark TF (ħ/πkBτ). (b) Zoom-in of the curves with n ≤ 1.006×1011 cm-2 near 

the MIT region. TE1 (TE2) are marked by the upward (downward) arrows. Curves that 

show a downturn with decreasing T are displayed in red.  

  

Figure 2 (Color online) A phase diagram of T and n. based on the sign of dσ/dT. The 

black squares (red dots) represent TE1 (TE2). TF  and TD = ħ/πkBτ are shown as the dotted 

and dash-dotted lines, respectively.  

 

 

Figure 3 (Color online) (a) TE2 as a function of n; (b) TE2 as a function of μ(T = TE2). The 

inset shows the same plot and a power-law fit (dotted line) in logarithmic scale. Data 

from another two samples, one examined in this work (squares) and the other in Ref. [5] 

(diamond), are also included.   

 

 

Figure 4 (Color online) σ(T) at n = 1.4 × 1011 cm-2 in (a) linear-T and (b) log-T scales.  

The green bars mark the crossover temperature, 0.1 ħ/kBτ. The red line in (a) shows the 

linear section, and the dotted line shows the extrapolation to T = 0. 










