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The densest binary sphere packings have historically been very difficult to determine. The only
rigorously known packings in the α-x plane of sphere radius ratio α and relative concentration x
are at the Kepler limit α = 1, where packings are monodisperse. Utilizing an implementation of
the Torquato-Jiao sphere-packing algorithm [S. Torquato and Y. Jiao, Phys. Rev. E 82, 061302
(2010)], we present the most comprehensive determination to date of the phase diagram in (α, x)
for the densest binary sphere packings. Unexpectedly, we find many distinct new densest packings.

PACS numbers:

A packing is defined as a set of nonoverlapping ob-
jects arranged in a space of dimension d, and its packing
fraction φ is the fraction of space that the objects cover.
Packings of spheres can be used to describe the struc-
tures and some fundamental properties of a diverse range
of substances from crystals and colloids to liquids, amor-
phous solids and glasses [1–3]. In particular, the densest
sphere packings in d-dimensional Euclidean space R

d, or
packings with maximal packing fraction φmax, often cor-
respond to ground states of systems of particles with pair-
wise interactions dominated by steep isotropic repulsion
[4–7]. Recently, packings of different sized spheres in R

3

have been employed to model the structures of a range of
materials, including, for example, solid propellants and
concrete [8, 9]. The focus of the present paper is binary
sphere packings, packings of spheres of two sizes, which
have long been used as models for the structures of a
wide range of alloys [5, 10–12].

Past efforts to identify the densest binary sphere pack-
ings have employed simple crystallographic techniques
[13, 14] and algorithmic methods, e.g., Monte Carlo and
genetic algorithm [15, 16]. However, these methods have
achieved only limited success, in part due to the very
large parameter space in (α, x) of binary packings, where
α ≡ RS/RL and x ≡ NS

NS+NL
, with RS , NS and RL, NL

the respective radii and numbers of the small and large
spheres in the packing, and where in the infinite volume
limit NS+NL → ∞, x remains constant. Employing tra-
ditional algorithms, difficulties result from the enormous
number of steps required to escape from local minima in
“energy”, defined as the negative of the packing fraction.

In this work, we present the most comprehensive de-
termination to date of the phase diagram for the dens-
est infinite binary sphere packings. Employing an algo-
rithmic search using an implementation of the Torquato-
Jiao (TJ) linear programming algorithm [17], we identify
17 distinct alloys, including seven that were heretofore

unknown, present in the densest packings over a range
of (α, x) where significantly fewer were thought to be
found. Previously, the alloys thought to be present for
α >

√
2 − 1 = 0.414213 . . . corresponded to structures

such as the AlB2(hexagonal ω), HgBr2, and AuTe2 struc-
tures [14, 16, 18], and to two structures composed of equal
numbers of small and large spheres [19]. For α ≤

√
2−1,

the alloys thought to be present were XYn structures of
close-packed large spheres with small spheres (in a ratio
of n to 1) in the interstices, e.g., the NaCl packing for
n = 1. Using the TJ algorithm, we always identify either
the densest previously known alloy, or one that is denser.

The finding that such a broad array of different densest
stable structures consisting of only two types of compo-
nents can form without any consideration of attractive or
anisotropic interactions is of significant practical impor-
tance. Our findings strongly suggest that the wide vari-
ety of atomic, molecular, and granular structures found in
nature may owe much of their structural diversity to en-
tropic (free-volume maximizing) interactions rather than
only to anisotropies in nearest-neighbor bonding.

Structures, or configurations of points, can be classi-
fied as either periodic or aperiodic. Roughly defined, a
periodic structure (packing) is one consisting of a cer-
tain number of points (sphere centers), called the basis,
placed in a defined region of space, the fundamental cell,
replicated many times such that the cells cover all space
without any overlap between cells (or spheres). If a fun-
damental cell has a minimal basis, then a smaller cell
and basis with the same periodic structure does not ex-
ist. An aperiodic structure has an infinite minimal basis.
We use the term “alloy” in a general sense to mean a
structure composed of two or more distinguishable com-
ponents that are not phase-separated.

The problem of generating dense packings of nonover-
lapping nonspherical particles within an adaptive fun-
damental cell subject to periodic boundary conditions



2

has been posed as an optimization problem called the
adaptive-shrinking cell (ASC) scheme [20]. The TJ
sphere-packing algorithm [17] is a linear-programming so-
lution of the ASC scheme for the special case of packings
of spheres with a size distribution for which linearization
of the design variables, including the periodic simulation
box shape and size, and impenetrability constraints, is
exact. The TJ algorithm leads to strictly jammed pack-
ings of spheres with variable degrees of order, includ-
ing the maximally dense packings. In a strictly jammed
packing, no volume-decreasing deformation of the funda-
mental cell or any internal collective particle motions are
possible. Consequently, maximally dense periodic pack-
ings must also be strictly jammed because otherwise the
volume of the packing could be reduced [21].
Using the TJ algorithm, we have systematically sur-

veyed the parameter space (α, x) ∈ [0, 1]× [0, 1], omitting
the rectangular area α < 0.2, x > 11/12 for reasons men-
tioned below, to find the putative densest binary packings
for all bases of up to 12 spheres. From this survey, we
construct the most comprehensive determination to date
of the phase diagram of the densest infinite binary pack-
ings, and the best-known lower bound on the function
φmax(α, x), the packing fraction of the densest infinite
packings of binary spheres at fixed (α, x) for the values
of α in our survey; see Fig. 1. We present a detailed view
of the composition of phases in Figure 2.

FIG. 1: (Color online) The most comprehensive determina-
tion to date of the phase diagram and maximal packing frac-
tion surface φmax(α, x) of the densest infinite binary sphere
packings. The highest point is φmax(0.224744 . . . , 10/11) =
0.824539 . . . , and all packings for α > 0.623387 . . . consist of
two phase-separated monodisperse Barlow phases. We have
excluded the rectangular region α < 0.20, x > 11/12. Shad-
ings indicate phase composition, as specified in Fig. 2.

Away from the point (α, x) = (0, 1), assuming that the
packing fraction and composition of the generally small
number of densest alloys at specified radius ratio α are
known, the densest infinite packings are phase-separated
combinations of alloy and/or monodisperse phases. The
spheres in the monodisperse phases are packed as any of
the uncountably infinite number of Barlow packings [22],
e.g., the well known fcc and hcp close-packed packings.
However, as α → 0 and x → 1, the number of distinct
densest packings approaches infinity due to the infinite

number of XYn and similar packings. For this reason, we
exclude the region α < 0.2, x > 11/12 from our study,
truncating at α = 0.2 because it is close to the maximum
value α = 0.216633 . . . at which 11 small spheres fit in
the interstices of a Barlow packing of large spheres.

When α is near the Kepler limit of unity, the dens-
est packings consist of two phase-separated monodisperse
Barlow phases of small and large spheres with packing
fraction π/

√
18 [21]. This is the case in Fig. 1 for all

packings with α > 0.623387 . . . . In general, the surface is
continuous and piecewise differentiable, though as α → 0
and x → 1, the density of curves along which the surface
is not differentiable approaches infinity.

In R
2, periodic, quasicrystalline1, directionally peri-

odic2 and disordered3 structures can all be found among
the putative densest binary disk packings [18, 23, 24].
We believe that all of these types of structures might
be present among the densest binary sphere packings in
R

3 as well, though we do not identify quasicrystalline or
disordered structures here. Due to computational con-
straints attributable to the scope and resolution of our
survey in (α, x), we have limited our investigation to pe-
riodic packings considering all possible bases of 12 and
fewer spheres. This limitation substantially increases the
difficulty of identifying any aperiodic packings, which
most often cannot be approximated well by a periodic
packing with a basis of 12. The directionally periodic
packings that we have identified are those for which no
boundary cost exists between phases, e.g., between AlB2

and monodisperse phases, and these packings are there-
fore degenerate in density with periodic packings.

Identifying the densest packings: To identify the dens-
est infinite binary packings in R

3, we begin with the ob-
vious statement that at all given (α, x), there is a dens-
est packing that consists of a finite number of phase-
separated alloy and monodisperse phases. Since we limit
ourselves in this work to minimal bases of no more than
12 spheres, we must assume that all of these alloy phases
can be constructed from repetitions of local structures
consisting of 12 spheres or fewer. Though we recognize
that this latter assumption is most likely false for some
values of (α, x), we contend that for the majority of the
area of the parameter space studied, it is correct.

We describe a distinct alloy as one with a unique com-
bination of composition of spheres in its minimal basis
and lattice system characterization of its fundamental

1 A quasicrystal can be roughly described as an aperiodic structure
that nonetheless exhibits bond orientational order in symmetries
(e.g., icosahedral) forbidden to periodic crystals.

2 We describe a directionally periodic structure as an aperiodic
structure that exhibits a period along at least one spatial axis
but never simultaneously along all d vectors that span the space.

3 For the purposes of this paper, a disordered structure is aperiodic
but neither a quasicrystal nor directionally periodic.
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FIG. 2: (Color online) Phase diagram in (α, x), excluding the region α < 0.2 and x > 11/12, of the densest-known infinite
binary sphere packings considering periodic packings with minimal bases of 12 or fewer spheres.

cell. This is a more encompassing characterization than
that applied in Ref. [18], where periodic alloys in the
densest binary disk packings were classified by composi-
tion and the numbers of small and large sphere contacts
in the fundamental cell. For example, the distinct alloy
with six small and one large sphere in its minimal ba-
sis and fundamental cell belonging to the triclinic lattice
system exhibits a wide range of contact networks over
the range 0.292 ≤ α ≤ 0.344 when it appears in the
densest packings. To illustrate this point, we have di-
vided this alloy into three subcategories, (6-1)8, (6-1)6,
and (6-1)4, where the subscript indicates the number of
large sphere contacts per large sphere, as depicted in the
detailed phase diagram (Fig 2). We note that the alloy
could be further subdivided by the numbers of small-
small and large-small contacts.

The boundaries between phases are negligible in the in-
finite volume limit, and so the packing fraction of a col-
lection of phase-separated monodisperse and β distinct
alloy phases can be written as,

φ(α, x) =
4π
3

(

(1−x)R3
L+xR3

S

)

xCS
B+(1−x)CL

B+
∑β

i=1x
L
i

(

Ci

Li
− Si

Li
CS

B−CL
B

) ,

(1)
with CS

B and CL
B the volume per sphere, respectively,

in a close-packed Barlow packing of small and large
spheres, xL

i the relative fraction of large spheres dis-
tributed in alloy phase i, and Ci the volume of a fun-
damental cell of alloy phase i containing Li large and Si

small spheres. The constraints xL
i ≥ 0,

∑β

i=1 x
L
i ≤ 1−x,

and
∑β

i=1(Si/Li)x
L
i ≤ x must be valid due to conserva-

tion of total particle numbers.

To find the densest packing φmax(α, x) from among
β alloy and two close-packed monodisperse phases, Eq.
(1) must be maximized. This is accomplished by treat-
ing the aforementioned β + 2 constraints and the sum-
mation term in the denominator of Eq. (1) as a linear
programming problem where the objective is to minimize

the summation. From this postulation, it can be proved
[25] that there is always a densest binary packing consist-
ing of no more than two phase-separated phases, though
it may be degenerate in density with packings consisting
of more than two phases or with mixed phase packings.

Using Eq. (1) and considering a fixed value of α, the
densest infinite binary packings constructed from binary
alloys with bases of 12 or fewer spheres can be found for
all values of x. This only requires knowing the densest
packings in a fundamental cell for combinations of pos-
itive integer Si and Li such that Si + Li = 2, 3, . . . , 12.
Employing the TJ algorithm, we have solved these prob-
lems (putatively) to accuracy of about 10−4 in φ for α
spaced 0.025 apart, and on a finer grid with α spaced
about 0.0028 apart for certain values of Si and Li where
particularly dense packings were identified.

Figure 2 is our determination of the phase diagram,
described with heretofore unattained accuracy, for the
densest infinite binary sphere packings considering peri-
odic packings with minimal bases of 12 or fewer spheres.
In the diagram, the seven previously unrecognized dis-
tinct alloys are described according to the composition of
their minimal basis, e.g., (6-6) for a packing with 6 small
and 6 large spheres per fundamental cell. In Fig. 2, the
points (lines) where the composition of phase-separated
phases changes from alloy plus monodisperse packing of
small spheres to the same alloy plus large spheres are not
drawn. Additionally, when only one alloy is listed, it is
assumed that the densest packing consists of a monodis-
perse phase and an alloy phase, except at points such that
x = Si/(Si +Li), with Si and Li the respective numbers
of small and large spheres in the alloy phase listed, where
only the alloy phase is present.

We briefly describe the 17 distinct alloys here, leav-
ing the detailed descriptions for a later work [25]. The
XYn alloys are present for n = 1, 2, 4, 8, 10 and 11. In
these packings, the large spheres are close-packed Bar-
low packings, and the small spheres are inside the inter-
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stices as rattlers, movable but caged spheres, except for
at “magic” [18] α where they are jammed. Additionally,
for n = 2, 4, 8 and 10, there are XYn alloys for α greater
than the magic radius ratios. These packings consist of
large spheres arranged as in a Barlow packing but not in
contact, with interstitial jammed small spheres arranged
as was the case for the magic α.

The AlB2 alloy is well known, and the HgBr2 and
AuTe2 alloys, described in another work [16], have, re-
spectively, four small and two large and two small and
one large spheres in their fundamental cells. The alloys
belong to the orthorhombic and monoclinic lattice sys-
tems, respectively. The alloy listed as (2-2)∗ exhibits the
same packing fraction (error of less than 10−4) over the
range 0.480 ≤ α ≤ 0.497 where it appears in the densest
packings as the alloy described in Ref. [19] as “Struc-
ture 2”, though “Structure 2” has four small and four
large spheres in its fundamental cell. Due to the precise
agreement of packing fractions, we postulate that the two
alloys may be the same or have materially negligible dif-
ferences over the range 0.480 ≤ α ≤ 0.497.
There are two alloys, (11-1) and (10-1), that are sim-

ilar to the XY11 and XY10 packings except that their
fundamental cells belong to the tetragonal and rhombo-
hedral lattice systems, respectively, as opposed to cubic.
The (6-1)10 alloy can be described as an orthorhombic
body-centered packing of large spheres, each with ten
large-large sphere contacts, with four small spheres on
each face. The alloy subdivided as (6-1)8, (6-1)6, and
(6-1)4 in Fig. 2 is similar but with a skewed fundamental
cell belonging to the triclinic lattice system.

Over the range 0.414 < α < 0.457 where the (6-6) alloy
appears in the densest packings, we have found that in
simulation, increasing the basis from one small and one
large spheres up to six small and six large spheres in a
one-to-one ratio results in alloys with increasing packing
fraction. The simulations with four large and four small
spheres in the fundamental cell produce an alloy with
packing fractions that agree (error of less than 10−4) with
those of “Structure 1” described in Ref. [19]. The (5-2)
alloy is arranged as offset square lattice layers of large
spheres with small spheres in between; the alloy belongs
to the monoclinic lattice system. The (7-3) alloy funda-
mental cell belongs to the orthorhombic lattice system.
The alloy is similar to three adjacent fundamental cells
of an AlB2 packing with one extra small sphere inserted.
Our determination of the phase diagram (Figs. 1 and

2) describes an unexpected diversity in the densest binary
sphere packings, with 17 distinct alloys present. One im-
plication of these findings is that entropic (free-volume
maximizing) particle interactions contribute to the struc-
tural diversity of mechanically stable and ground-state
structures of atomic, molecular, and granular solids. Ad-
ditionally, the structures we have identified can be useful
as known points of departure when investigating experi-
mentally the properties of binary solids composed of par-

ticles that exhibit steep isotropic pair repulsion. Finally,
our results serve as crucial references states for studies of
corresponding disordered binary sphere packings.
We have carried out a comprehensive study of the

densest infinite binary sphere packings at high resolu-
tion in α and x, leading to the discovery employing the
TJ algorithm of many heretofore unknown structures.
Though we have limited ourselves to minimal bases of 12
or fewer spheres, the discovery of the (7-3), (6-6), and (5-
2) alloys suggests that periodic structures with minimal
bases larger than 12, further directionally-periodic, qua-
sicrystalline and disordered structures might be present
among the densest packings. Additionally, it is possible
that densest packings have a relation to the structures
of glassy binary sphere solids and/or to those of binary
sphere liquids near the freezing point. In future work, we
will investigate these possibilities.
This work was supported by the NSF under award

numbers DMR-0820341 and DMS-0804431.
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