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Abstract

Time dependent two-dimensional magnetohydrodynamic simulations are carried out for toka-

mak plasmas with edge poloidal flow. Differently from conventional equilibrium theory, a density

pedestal all around the edge is obtained when the poloidal velocity exceeds the poloidal sound

speed. The outboard pedestal is induced by the transonic discontinuity, the inboard one by mass

redistribution. The density pedestal follows the formation of a highly sheared flow at the tran-

sonic surface. These results may be relevant to the L-H transition and pedestal formation in high

performance tokamak plasmas.
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Understanding energy transport in tokamaks is critical to the development of controlled

nuclear fusion. To achieve burning plasma conditions, the thermal energy must be confined

for a sufficiently long time (∼ 1 s) and the edge transport properties play an important role

in determining the confinement time. In tokamak experiments, two distinct confinement

regimes are observed, the so-called low (L) and high (H) confinement modes. In H-mode

[1], the confinement time can be a factor of two or more longer than in L-mode, making

H-mode operation highly desirable for future experiments and reactors. L-H transitions [2]

are observed to occur spontaneously in experiments when an input heating power threshold

is exceeded. H-modes are characterized by steep density gradients (pedestals) near the

edge and by high rotation shear across the pedestal region, with the poloidal (the short

way around the torus) velocity changing by several km/s across a narrow layer. In the

present letter, we identify a possible mechanism that can play an important role in the L-H

transition. This mechanism is a purely magnetohydrodynamic effect that develops when the

edge plasma poloidal flow exceeds the poloidal sound speed Csp. Since the edge poloidal

sound speed is typically in the range of a few tens km/s, this mechanism requires minimum

poloidal velocities of that same order. Using time-dependent two-dimensional compressible

MHD simulations, we show that a pedestal in density and a strongly sheared velocity profile

develop in poloidally rotating plasmas. We refer to this mechanism as the MHD pedestal

to emphasize the MHD character of the physics, and conjecture that the sheared velocity

profile causes an edge transport barrier. Equilibrium calculations [3, 4] also predict a density

pedestal for transonic poloidal flows. However, contrary to the observations, the standard

pedestal height from equilibrium theory is highly non-uniform (∼ cos(θ/2), θ is the poloidal

angle), and vanishes on the high-field (inner) side (see Fig. 11 of Ref. [4]). A new effect

(poloidal redistribution of mass) is identified by 2D simulations described in this letter, which

produces a pedestal of finite height at every angular location, consistently with experiments.

In order to distinguish between the characteristics of the pedestal in the inboard and in the

outboard part of the plasma, we refer to the first one as to the inner pedestal and to the latter

as to the transonic pedestal (to emphasize its connection with transonic poloidal flow). This

paper does not address important aspects of the L-H transition and/or pedestal formation

such as the origin of the edge poloidal flow, the pedestal stability [5], and evolution over the

transport time scale. The only claim of this letter is that a rotating plasma develops an edge

density pedestal and a velocity shear layer when the poloidal velocity Vp exceeds the poloidal
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sound speed Csp = CsBp/B (Bp and B are the poloidal and total B-field respectively). The

simulations shown here are limited to short time scale evolutions of the order of a few poloidal

revolutions, and their relevance is likely restricted to the early onset of the L-H transition

and pedestal formation.

There are some features of the MHD pedestal formation that nicely fit the experimental

observations of the L-H transition. For instance, according to this theory, plasmas with

a lower edge poloidal sound speed require lower edge poloidal flows for the MHD pedestal

formation. This agrees with the observations that the power threshold for the L-H transition

decreases in the presence of an X-point close to the plasma. Since the poloidal sound speed

vanishes at the X-point, a lower poloidal rotation is required to exceed Csp at the plasma

edge. Furthermore, it was observed that the L-H power threshold is even lower in “true”

double-null configurations [6] where Csp vanishes on two points of the outer surface. A

double-null plasma minimizes Csp and would require a lower edge Vp for the development

of the MHD pedestal. A number of experiments [7] reported that the L-H power threshold

decreases with the ion mass. Since Csp decreases with the ion mass, we conjecture that the

MHD pedestal formation is also facilitated in plasmas with higher mi.

The physics basis of the MHD pedestal theory resides on the development of the so-

called transonic discontinuity identified in the analytic theory of Ref. [3, 4]. In transonic

equilibria, the poloidal velocity is slower than the poloidal sound speed (subsonic) in the

plasma core and faster near the edge (supersonic). In Ref. [3], it is shown with a simplified

analytic model, that toroidal geometry causes the transition between the two regions to occur

through a radial tangential discontinuity. Because of the frozen-in law, the plasma must

flow between adjacent magnetic surfaces; due to the toroidal geometry, the cross section for

poloidal flow is maximum on the outboard side of the plasma and minimum on the inboard.

Basic gas-dynamic considerations indicate that a flow stream that is subsonic (supersonic)

on the inner midplane will decelerate (accelerate) as it moves toward the outboard part

of the plasma. Thus two adjacent streams, one just subsonic on the inner midplane and

one just supersonic, will see the difference in their Mach numbers increase as they move

toward the outer midplane generating radially discontinuous profiles. It is stressed that the

equilibrium discontinuity is not a shock but a tangential discontinuity, i.e., there is no flow

across the discontinuity. Figure 1 shows a sketch of the expected discontinuity in velocity.

In the remainder of this letter, it is shown how a static equilibrium naturally evolves to
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FIG. 1. Sketch of poloidal velocity (red) and poloidal sound speed (blue). The profile represented

with a dotted line is not allowed at steady state by MHD force balance. The discontinuous solid

line is the only possible transonic solution.

form discontinuous profiles when a (continuous) momentum source is applied to the plasma.

The origin of the momentum source is not addressed here. The only assumption is that the

source is a smooth function of space, and strong enough to accelerate the edge plasma to

velocities above the local poloidal sound speed.

The basic description of the plasma is given by the time-dependent MHD model. The

computational domain includes the main plasma and a “halo” plasma region, with cold,

low-density plasma, and open field lines. Ideal MHD is sufficient to capture the essential

physics in the core region, while the halo region is better represented as a resistive plasma.

Therefore, the resistive-MHD set of equations is used:

∂tρ+∇ · (ρV ) = 0, (1)

∂tρV +∇ ·
(
ρV V −BB + PI + Π

)
= Smom, (2)
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∂tB = ∇× (V ×B − ηJ) , (3)

∂tE +∇ · [(E + P )V −B(V ·B) + ηJ ×B] = V · Smom, (4)

where B is the magnetic field, V the plasma velocity, ρ the density, J the current, P ≡

p + B2/2 the total pressure, E = p
γ−1

+ ρV
2

2
+ B2

2
the total energy, γ the adiabatic index,

η the resistivity and the pressure tensor Π represents numerical viscosity. Resistivity is

defined using Spitzer’s formula, η ∼ T−3/2, and the temperature T = p/ρ is self-consistently

evolved using Eqs. (1)-(4). Qualitatively, results do not depend on the value of γ. Here

we use Te = Ti and the typical isothermal condition γ ' 1 valid for large parallel heat

conduction.The source term of poloidal momentum Smom is added to Eq. (2) and (4) in

order to drive the flow. The strength of the source is a smooth function of position (e.g. of

distance from the edge) or of the initial poloidal flux ψ, and optionally of the poloidal angle.

The system of time-dependent equations (1) to (4) is solved with the code SIM2D. SIM2D

is written in conservative form with a finite-difference numerical implementation using a

combination of a predictor-corrector and an alternate-direction implicit methods.

Based on the physical argument summarized earlier and in Ref. [3], the following qual-

itative behavior is expected for a transient with transonic poloidal flow. Once the flow

becomes supersonic (with respect to the poloidal sound speed Csp), a shock will form in the

outboard section of the plasma. Shock formation is a transient phenomenon consequence of

the compressible MHD model. The shock quickly moves in the poloidal direction, reaches

the inner midplane and disappears. The flow transports mass from the outboard to the

inboard part of the plasma: The mass accumulation on the inboard side of the plasma also

generates a steep density profile, thus providing a final state with a pedestal at every poloidal

location. No shocks persist in the final plasma state, only the tangential discontinuity or

MHD pedestal. At this point the plasma is divided in two regions: a supersonic outer re-

gion and a subsonic inner region (Fig. 1). The transition between the two regions occurs

with a finite discontinuity (in Mach number, density, velocity, pressure) that we denote as

the “MHD pedestal”. Mach number and velocity are radially continuous in the inboard

part of the plasma. Nevertheless, a density pedestal also develops at the inner midplane,

due to the mass transported in the poloidal direction. In tokamaks, the long particle mean

free path may prevent the shock formation. However, since the final state is shockless, the

quick shock transient introduced by compressible MHD (and probably unphysical in real
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tokamaks) should not alter the validity of the results with respect to the final state. This

is also true for the formation of the inner pedestal. Since the equilibrium MHD density for

supersonic poloidal flows is much smaller than the corresponding subsonic density, at steady

state part of the mass initially in the outboard region must necessarily have moved to the

inboard region, regardless of the presence of a shock.

We now show some numerical results, proving the formation of the MHD pedestal with

time-dependent simulations starting from an L-mode plasma equilibrium. A DIII-D lower

single null model equilibrium is used as initial condition for our simulations with the only

purpose to capture some reasonable experimental parameters, and provide the grounds for

a proof-of-principle simulation. The main equilibrium parameters are βt = 1.1% (βt is the

ratio between average pressure and vacuum magnetic pressure), plasma current Ip = 721kA

and vacuum toroidal field of BV = 1.26T . We assume an edge temperature of TE ∼ 30eV

(TE determines the edge sound speed, Csp . 20km/s at the edge) and a peak temperature of

TC = 3keV . Plasma temperature and density are initially constant in the halo region, and

equal to their edge values. A three-dimensional sketch of the initial equilibrium is shown

later in Fig. 4. In this case, the momentum source is assigned as Smom ∼ ρψ2 cos(θ/2) (θ is

the poloidal angle). The poloidal angle dependence is used to qualitatively reproduce the

shape of poloidal flow generation by non-uniform phenomena, like for instance turbulence

driven by unfavorable curvature or radial electric fields caused by particle losses. The radial

dependence describes a volumetric source of momentum that is peaked at the plasma edge.

The dependence on ρ guarantees that the velocity source is smooth, so that the velocity

discontinuity after the pedestal formation cannot be ascribed to the source shape since the

density cancels when the acceleration and the source are balanced, ∂tVp ∼ Smom/ρ ∼ ψ2. A

more realistic shape of Smom requires considerations related to the origin and the transport

of momentum that are outside the scope of this paper. The intent here is to show that a

smooth source of momentum causes an MHD pedestal when the plasma is accelerated above

the poloidal sound speed. There is no physical dissipation in the simulations (only numerical

viscosity), so that a weak momentum source is sufficient to create the MHD pedestal. In

future work, neoclassical poloidal viscosity will be included in the model and a realistic

power threshold for the pedestal generation will be estimated. This will require a transonic

poloidal viscosity model valid for supersonic speeds [8].

In presenting the simulation results, we normalized the time to τp, an average revolution
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FIG. 2. Density plot along the midplane at time t = 2.5τp. The shaded area corresponds to the

region with supersonic flow.

time considering an edge velocity of ∼ 40 km/s, consistent with experiments. The source

strength is measured through the dimensionless parameter Ŝ = (LpSmomB
2/γB2

pp)M=1 rep-

resenting the ratio τsp/τsource between the time of a sound wave poloidal revolution τsp and

the time required for the source of momentum to spin up the plasma at the poloidal speed

of sound (Lp ∼ 2πrM=1 is the poloidal revolution length). In the simulations, we use Ŝ ' 12

to quickly spin up the plasma to poloidal sonic velocities thus reducing the simulation time.

The poloidal flow becomes supersonic after a time ' 0.1τp and a shock forms in the outboard

region, which then travels in the poloidal direction. The duration of the transient depends

on the size of the source. A lower intensity source leads to a longer transient but will not

affect the final state. In the run described here, the shock reaches the inboard section of the

plasma in ' 0.8τp; after this time, a discontinuity is formed in density, velocity and Mach

number profiles. The shape of the density profile at time t = 2.5τp is shown in Fig. 2 (colored
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FIG. 3. Poloidal velocity and Mach number along the midplane at time t = 2.5τp. The dashed

line represents the velocity source (in [a.u.]). The shaded area corresponds to the region with

supersonic flow.

line) and compared to the initial density profile. The sharpening of the density gradient in

both the inboard and outboard regions is clearly visible. The difference between the two

pedestals is recognized from their position with respect to the supersonic region (shaded in

the figure). The inner pedestal is entirely in the supersonic region (i.e., it is not due to the

transonic jump in Mach number), while the transonic pedestal extends between the subsonic

and the supersonic regions. The shape of the poloidal velocity and Mach number profiles

is shown in Fig. 3. The sharp gradient in the outboard region for both profiles (due to the

transonic discontinuity) is in clear contrast with both the smooth profiles in the inboard

region and the smooth profile of the velocity source. The radial electric field Er (not shown)

has a shape similar to the poloidal velocity shape and a peak value of ∼ 30 − 40 [kV/m]

after the MHD pedestal formation. The velocity profile shows the presence of a minimum

(“transonic dip”) before the MHD pedestal region, similar to experimental profiles [9, 10].

The maximum velocity in Fig. 3 is . 40km/s, of the same order of the measured main-ion
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FIG. 4. Three-dimensional density plot at time t = 0 (a) and t = 2.5τp (b).

poloidal velocity in DIII-D [10]. Since there is no physical viscosity in the simulations, the

source must be reduced once the shock transient is over. The density pedestal structure

and the velocity shear layer shown in Figs. 2 and 3 do not appreciably change after the

initial transient. Additional insight on the characteristics of the transonic pedestal is gained

by considering a three-dimensional representation of the plasma density, as shown in Fig. 4.

Figure 4(a) shows the initial density profile (both in colormap and elevation), while Fig. 4(b)

shows the density for the quasi-steady state of the SIM2D simulation, highlighting the pres-

ence of the inner pedestal in the inboard and of the transonic pedestal in the outboard

region. The black line in Fig. 4(b) corresponds to the level Mp = 1: the Mp = 1 line runs

in the middle of the transonic pedestal (which is a transonic discontinuity) but on one side

of the inner pedestal (which is due to the poloidal transport of mass). Due to the lack of

physical dissipation (which prevents simulations from reaching a true steady state) and to
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the effect poloidal redistribution of mass, SIM2D quasi-steady states are similar, but not

identical, to the standard transonic equilibria calculated with FLOW [11].

No details were given about the origin of the momentum source. This is intentional, since

the described mechanism for the MHD pedestal formation does not depend on any specific

source: if the plasma is made to spin with transonic poloidal velocity, an MHD pedestal

will form, regardless of the origin of the spin-up. It is important to point out that poloidal

velocities of the order of the poloidal sound speed are larger than neoclassical values [12].

However, such velocities are observed in experiments [13, 14], and several mechanisms have

been proposed for poloidal spin-up. An intuitive mechanism is due to non-ambipolar losses

at the edge [15], producing a radial electric field at the plasma edge (due e.g. to fast-ion

losses) that drives a poloidal flow. Other known mechanisms for plasma spin-up include

turbulent spin-up [16, 17] and resistive spin-up [18].

An MHD-pedestal formation mechanism was described and verified with numerical sim-

ulations. Several experimental clues are found that seem to indicate that MHD transonic

discontinuities may play a role in the L-H transition. A more definite experimental confir-

mation can be provided by direct measurements of the main ion poloidal flow at the plasma

edge and the identification of the transonic dip (Fig. 3).
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