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We propose an experiment to create and verify entanglement between remote mechanical objects by use of
an optomechanical interferometer. Two optical cavities, each coupled to a separate mechanical oscillator, are
coherently driven such that the oscillators are laser cooled to the quantum regime. The entanglement is induced
by optical measurement and comes about by combining the output from the two cavities to erase which-path
information. It can be verified through measurements of degrees of second-order coherence of the optical output
field. The experiment is feasible in the regime of weak optomechanical coupling. Realistic parameters for the
membrane-in-the-middle geometry suggest entangled state lifetimes on the order of milliseconds.
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Despite the tremendeous success of quantum mechanics
at explaining the behaviour of the microscopic world, many
people have found it uncomfortable that macroscopic objects
should also obey the laws of quantum mechanics. This goes
back to the founders of quantum mechanics, and is the ori-
gin of the famous Schrödinger cat thought experiment [1].
However, if all time evolution is unitary according to the
Schrödinger equation, as in Everett’s relative-state interpreta-
tion [2], there is nothing that forbids counterintuitive phenom-
ena such as superpositions of macroscopically distinct states
[3]. It should therefore be possible to observe quantum effects
on arbitrarily large scales if the system is adequately shielded
from environmentally induced decoherence. Conversely, ex-
periments might reveal the existence of unknown sources of
decoherence [4, 5], which limit quantum mechanics to small
scales by causing an objective wavefunction collapse and cre-
ating a quantum-classical boundary.

Cavity optomechanics, where mechanical oscillators are
coupled to light or microwaves [6–8], is a promising field for
experimental tests of quantum mechanics at large scales. The
motion of a micromechanical object can be cooled via radia-
tion pressure forces [9–16]. One group has already reported to
have reached the quantum regime by resolved sideband cool-
ing [17], and others are expected to soon follow. An interest-
ing future direction for experiments would be to detect quan-
tum entanglement [18] between a micromechanical oscillator
and another system, such as an optical cavity field mode [19]
or a second mechanical oscillator [20–23].

In this Letter, we propose a new and promising route to cre-
ate and verify entanglement between two remote mechanical
oscillators. Our idea is based on an optomechanical interfer-
ometer where two optical cavities, each coupled to a separate
mechanical oscillator, are coherently driven in parallel. The
drive frequency is chosen such that the oscillators are cooled
close to the motional ground state. In short, entanglement is
achieved by combining the optical output from the two cavi-
ties to erase which-path information. The mechanical objects
in our setup have no direct interaction, but are projected onto
an entangled state through optical measurements, in contrast
to various earlier proposals [20–22]. A scheme related to ours
involving laser pulses was discussed in Ref. [23]. Similar ap-
proaches have been successfully applied to entangle remote

atomic ensembles [24, 25] as well as individual trapped ions
[26]. We also present a new and feasible way of detecting
the entanglement. The experiment we propose should be re-
alizable with present day technology in the regime of weak
optomechanical coupling. For the membrane-in-the-middle
geometry [16], we estimate that the entangled states can have
decoherence times on the order of milliseconds. This could
have relevance to quantum information and communication
technologies [27, 28].

Consider the standard optomechanical system where the
position of a mechanical oscillator modulates the frequency
of an optical cavity mode. We discuss a single cavity first and
move on to a system with two cavities later. We will have
the membrane-in-the-middle setup [16] in mind, but our dis-
cussion can apply to many other realizations. The photon and
phonon annihilation operators will be denoted by â and ĉ, re-
spectively. The interaction Hamiltonian is Hint = ~gx̂â†â
where g is a coupling constant. The mechanical position op-
erator is x̂ = xzpf(ĉ+ ĉ†), with xzpf being the size of the zero
point fluctuations. Input-output theory [29, 30] leads to the
quantum Langevin equations

˙̂a = −
(κ

2
+ iωC

)
â− igx̂â+

∑
i

√
κi âin,i , (1)

˙̂c = −
(γ

2
+ iωM

)
ĉ− igxzpf â†â+

√
γ ĉin .

The bare mechanical and optical frequencies are ωM and ωC.
The mechanical oscillator is coupled to a thermal bath, re-
sulting in a nonzero linewidth γ and a fluctuating force deter-
mined by the operator ĉin. For systems where the mechanical
quality factor ωM/γ is high, the Markov approximation gives
[ĉin(t), ĉ†in(t′)] = δ(t− t′) and 〈ĉ†in(t)ĉin(t′)〉 = nthδ(t− t′).
Here, nth ≈ kBT/~ωM, where T is the bath temperature.
The optical linewidth is κ =

∑
i κi, where κi is the decay rate

through decay channel i. We imagine a two-sided cavity with
a left (L) and a right (R) input port, and assume that the cavity
is driven from the left. The optical input modes then take the
form âin,L = e−iωDtāin + ξL(t) and âin,R = ξR(t), where āin
is a constant, ωD is the drive frequency, and the vacuum noise
operators ξi obey [ξi(t), ξ

†
j (t
′)] = 〈ξi(t)ξ†j (t′)〉 = δijδ(t−t′).

We define the detuning between the drive and the mean cavity
frequency as ∆ = ωD − ωC − g〈x̂〉.
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The cavity mode operator can be written as a sum of a mean
and a fluctuating part, â(t) = e−iωDt(ā + d̂(t)), where |ā|2
is the mean number of photons in the cavity. Here, we fo-
cus on the situation 〈d̂†d̂〉 � |ā|2. In that case, Eqs. (1) can
be linearized and solved analytically. The effective coupling
between the optical and mechanical fluctuations is given by
α = gxzpf ā. In the regime of weak coupling |α| � κ and
for negative detuning ∆, the mechanical oscillator is approx-
imately in a thermal state, but with renormalized parameters
compared to the case of g = 0. The frequency ω̃M is shifted
from its bare value due to the interaction with the optical field,
often referred to as the optical spring effect [31]. The effec-
tive linewidth γ̃ = γ + γopt is now a sum of the bare value
and a contribution γopt due to the optomechanical coupling.
The latter is positive when the detuning ∆ is negative, lead-
ing to line broadening. The effective mean phonon number is
the weighted sum nM = (γnth + γoptnopt)/γ̃, where nopt is
a measure of the effective temperature of the radiation pres-
sure shot noise [30, 32, 33]. Below, we will set the detuning
to ∆ = −ωM, which is optimal for cooling, and assume that
γopt � γ and nopt = κ2/(4ωM)2 < 1. Note however that
our results are also of interest when nopt > 1 (see Ref. [34]).

The optical output mode on the right-hand side of the cavity
is b̂(t) =

√
κRâ(t) − ξ̂R(t). The optomechanical interaction

leads to sidebands in the output which are displaced from the
drive frequency ωD by the mechanical frequency ωM. The
sidebands originate from Raman scattering off the mechanical
oscillator, where a photon gains (loses) energy by destroying
(creating) one phonon. We will imagine that photons at the
drive frequency can be completely filtered away and that the
two sidebands can be measured independently. We will refer
to the output at frequency ωD±ωM as the blue (red) sideband,
and denote the output mode filtered around this frequency by
b̂b(r)(t). See the Supplementary Material [34] for details. The
width of the sidebands are given by the mechanical linewidth
γ̃, so we assume the filter bandwidth λ to obey γ̃ � λ� ωM.
The ratio between the output fluxes of red and blue photons is
nopt(nM + 1)/(nopt + 1)nM.

A filter that removes the carrier photons at ωD and splits the
red and blue photons into different spatial modes might pose
a technical challenge. One reason is that the mechanical fre-
quency is typically in the kHz-MHz range. However, there are
also experimental setups with ωM in the GHz range [35–37].
Another reason is that the ratio between the fluxes of blue and
carrier photons, given by 4(gxzpf/κ)2nM, is very small in the
weak coupling limit. An alternative and more feasible way
to achieve the filtering is through heterodyne photodetection,
where the blue and red sidebands can easily be distinguished
in the Fourier domain. This is discussed in detail in the Sup-
plementary Material [34].

We define the degrees of second-order coherence [38]

g
(2)
j|i (τ) =

〈b̂†i (t)b̂
†
j(t+ τ)b̂j(t+ τ)b̂i(t)〉

〈b̂†i (t)b̂i(t)〉〈b̂
†
j(t)b̂j(t)〉

, (2)

where steady state has been assumed, τ > 0, and the in-

dices i and j denote either red (r) or blue (b). We find that
g
(2)
r|r (τ) = g

(2)
b|b(τ) = 1+e−γ̃τ . This is what one would expect

for thermal radiation seen through a Lorentzian filter of width
γ̃ [38]. The photon statistics of the red and blue sidebands is
that of thermal radiation simply because the mechanical oscil-
lator is approximately in a thermal state. More interestingly,
the cross-correlators become

g
(2)
b|r (τ) = 1 +

nM + 1

nM
e−γ̃τ , (3)

g
(2)
r|b (τ) = 1 +

nM
nM + 1

e−γ̃τ ,

when restricting the delay time such that τ � κ−1, λ−1 [34].
The result (3) has a simple physical explanation. If the ef-
fective phonon number nM is less than 1, the mechanical os-
cillator spends most of the time in the ground state |0〉. It
can gain energy and reach the excited state |1〉 by the cre-
ation of a red photon. However, it is bound to return to the
ground state quickly, through the creation of a blue photon.
This means that conditioned on the detection of a red pho-
ton, the probability of detecting a blue photon is high, such
that g(2)b|r (τ) becomes large. The opposite is not the case. For
nM < 1, once a blue photon is detected, it probably means
that the oscillator is now in the ground state |0〉 and detec-
tion of a red photon is not particularly likely. In fact, in the
limit nM → 0, having detected a blue photon does not change
the probability of detecting a red one, such that g(2)r|b (τ) → 1.
Note that for sufficiently small nM, the classical inequality
[g

(2)
b|r (τ)]2 ≤ g

(2)
r|r (0)g

(2)
b|b(0) [38] can be violated. This hap-

pens when |〈b̂†r(t)b̂
†
b(t+ τ)〉|2 > 〈b̂†r(t)b̂r(t)〉〈b̂

†
b(t)b̂b(t)〉 and

means that the fields b̂b and b̂r are entangled. This is a nec-
essary requirement for detecting entanglement between me-
chanical oscillators in the setup that we discuss next.

FIG. 1: (Color online) Schematic view of our proposed experimental
setup. Combining the output from the two cavities on a beam splitter
can create entanglement between the mechanical oscillators. This
can be verified by measuring the photon statistics of the red (dashed)
and the blue (dotted) sidebands. The sideband filtering can also be
achieved through heterodyne photodetection.

We now move on to the main part of this Letter and study
the setup presented in Fig. 1. We consider two optical cav-
ities, 1 and 2, each coupled to a mechanical oscillator. For
simplicity, the cavities are assumed to be identical, such that



3

ωC,1 = ωC,2 ≡ ωC, κ1 = κ2 ≡ κ, etc. We imagine that
κR � κL, such that most photons leave the cavity through
the mirror on the right. Furthermore, we assume that the op-
tomechanical coupling constants are equal. We do however
allow for the two mechanical oscillator frequencies to differ,
defining ωM,1 = ωM and ωM,2 = ωM + δ, but we restrict the
difference to |δ| � κ, ωM. The cavities are driven in parallel
by a laser optimally detuned to ∆ = −ωM, such that cool-
ing to the quantum limit is achieved for both oscillators. The
right-hand side output from the two cavities are combined on
a 50:50 beam splitter and then filtered into red and blue side-
bands, as discussed above. The red photons are detected at
either the photomultiplier Ar or Br, whereas the blue photons
are detected at photomultiplier Ab or Bb.

Let us first discuss how this setup can lead to entangle-
ment between the two mechanical oscillators. Assume that
the two oscillators are identical and in the state |0, 0〉, i.e.,
zero phonons in both. The detection of a red sideband pho-
ton means that one mechanical excitation, a phonon, has been
created. However, the information on which cavity the photon
came from has been erased. This means that, conditioned on
detecting a red photon at either Ar or Br, the wavefunction
of the oscillators has now collapsed onto the superposition
(|1, 0〉+eiθ|0, 1〉)/

√
2. This is an entangled state, even though

it contains only one phonon [39, 40]. The phase θ depends on
whether the photon was detected at Ar or Br, and other factors
such as optical path length differences. While this simplified
discussion provides insight on how entanglement is created,
the thermal baths must of course be taken into account.

It is interesting to examine the degrees of second-order co-
herence defined in Eq. (2) for this setup. Now we need to
specify not only photon “color”, but also which detectors we
refer to. Taking g(2)Ab|Ar

(τ) as an example, it is instructive to
express this as

g
(2)
Ab|Ar

(τ) =
〈b̂†Ab

(t′)b̂Ab
(t′)〉Ar

〈b̂†Ab
(t′)b̂Ab

(t′)〉
, (4)

defining t′ = t + τ . Here, the expectation value in the
denominator is the photon flux at detector Ab with respect
to the state ρss, which is the steady state density matrix in
the absence of measurements. In the state ρss there is ob-
viously no entanglement between the mechanical oscillators.
On the other hand, the expectation value in the numerator is
defined by 〈Ô(t′)〉Ar

= Tr(Ôρ̃(t′)), where, formally, ρ̃(t′) =

eL(t
′−t)b̂Arρssb̂

†
Ar
/Tr(b̂Ar

ρssb̂
†
Ar

). This is the time-dependent
density matrix conditioned on the detection of a red photon at
Ar at time t. The Liouvillian L is that of the free evolution of
the total system. In the state ρ̃(t′), entanglement between the
remote oscillators can occur.

With our assumptions about the cavity and oscillator pa-
rameters, the effective phonon number nM and linewidth γ̃ of
the two oscillators will be approximately equal, such that we
can drop indices on these quantities. For τ � κ−1, λ−1, we

find that [34]

g
(2)
Ab|Ar

(τ) = 1 +
nM + 1

nM
e−γ̃τ cos2(δτ/2 + φ) , (5)

g
(2)
Bb|Ar

(τ) = 1 +
nM + 1

nM
e−γ̃τ sin2(δτ/2 + φ) ,

where the phase φ depends on path length differences. One
could make this phase adjustable by introducing a phase shift
in one of the arms of the interferometer, as suggested in Fig. 1.
The interference effect in Eq. (5) can be understood classically
for large nM. It simply means that the red light phase differ-
ence between the two cavity outputs at time t is related to the
blue light phase difference at t+τ because the mechanical os-
cillators have a well defined phase difference for times τ . γ̃.
This phase difference becomes time dependent if the mechan-
ical frequency difference δ is nonzero. From a quantum me-
chanical point of view, the detection of a red photon creates a
mechanical superposition with a definite phase θ. The sub-
sequent blue photon will be superposed between the upper
and lower arms of the interferometer, with a relative phase
determined by θ. This again determines the detection proba-
bility at Ab or Bb. A nonzero δ means that the superposition
switches back and forth from symmetric to antisymmetric as
τ increases, which is observable if δ & γ̃. Note also that the
ratio g(2)Ab|Ar

/(g
(2)
Ab|Ar

+ g
(2)
Bb|Ar

) can exceed its classical bound
of 2/3 and come close to unity for small mean phonon num-
bers nM. This means that, in the limit nM, δ/γ̃ → 0, one can
e.g. arrange the phases in such a way that when a red photon
is detected at Ar, the next blue always arrives at Ab.

We now discuss how entanglement between the two me-
chanical oscillators can be detected. We wish to verify that
following a red photon detection, the subsequent blue pho-
ton is in a superposition state of originating from cavity 1 and
cavity 2, i.e., that there is entanglement between the output
modes b̂b,1 and b̂b,2. This entanglement must be smaller than
or equal to the entanglement between the mechanical oscilla-
tors. Again, we let t′ = t + τ . If ρ̃(t′) is a separable state, it
is straightforward to show that

R(τ) ≡
〈b̂†b,1(t′)b̂b,1(t′)b̂†b,2(t′)b̂b,2(t′)〉Ar∣∣〈b̂†b,1(t′)b̂b,2(t′)〉Ar

∣∣2 ≥ 1 . (6)

This also holds for classical correlations between the two
fields, which e.g. could originate from technical laser noise.
Thus, we can use R(τ) as an entanglement witness [18, 34].

Expectation values with respect to the state ρ̃(t′) can
be measured through degrees of higher-order coherence, as
Eq. (4) suggests. We find that R(τ) ≤ Rm(τ), where the
measurable upper bound for the entanglement witness is [34]

Rm(τ) = 4
g
(2)
Ab|Ar

(τ) + g
(2)
Bb|Ar

(τ)− 1(
g
(2)
Ab|Ar

(τ)− g(2)Bb|Ar
(τ)
)2 , (7)

for a symmetric setup where the output flux is the same from
both cavities. Thus, a measurement ofRm(τ) < 1 is evidence
of entanglement between the mechanical oscillators.
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We now show that the separability criterion (6) is violated
as the oscillators are cooled close to the ground state. Inserting
the expressions in Eq. (5), we arrive at

Rm(τ) =
4nM

[
nM + (nM + 1)e−γ̃τ

]
(nM + 1)2e−2γ̃τ cos2(δτ + 2φ)

, (8)

again for τ � κ−1, λ−1. In Fig. 2 we plot max(1−Rm(τ), 0)
as a function of phonon number nM and delay time τ in
units of γ̃−1, when assuming δτ + 2φ to be an integer of π.
We observe that entanglement can be verified through viola-
tion of the separability criterion for mean phonon numbers
nM < 0.26. For nM � 1, the entanglement can be detected
for times τ < γ̃−1 ln((

√
2 − 1)/2nM). It is also worth men-

FIG. 2: (Color online) Density plot of max(1−Rm(τ), 0) as a func-
tion of mean phonon number nM and time delay τ . We set δτ+2φ =
0. The separability criterion is violated below the white dashed
curve, proving entanglement between the two mechanical oscilla-
tors. The entanglement can be verified for mean phonon numbers
nM < 0.26 and time delays τ < γ̃−1 ln((

√
2− 1)(nM + 1)/2nM).

tioning that before the first blue photon is emitted, the entan-
glement between the mechanical oscillators only decays on
the timescale of the mechanical phase decoherence, which is
likely to be much larger than γ̃−1. This could be measurable
by looking at the statistics of only the first blue photon follow-
ing a red.

To show that our proposed experiment is within reach
of present day experiments, we take the membrane-in-the-
middle geometry [16] as an example. A set of realistic pa-
rameters is ωM/2π = 2 MHz, ωM/γ = 2 · 107, κ/2π = 1
MHz, and |α|/2π = 10 kHz. Assuming an initial temper-
ature of 20 mK, this gives an effective mean phonon number
nM = 0.068, with nopt = 0.016. The output flux of red (blue)
photons would be 41 (172) photons per second. The separa-
bility criterion would be violated for times τ < 0.47 millisec-
onds. Note that this is over 400 times longer than the entan-
glement lifetimes reported in a corresponding experiment with
atomic ensembles by Chou et al. [24]. The long decoherence
time is a result of high mechanical quality factors even when
laser cooling to the quantum regime.

In conclusion, we have proposed an experiment for entan-
gling remote mechanical oscillators. This would be an impor-
tant milestone in the endeavour to explore quantum effects in

macroscopic systems. The entanglement is induced by opti-
cal measurements and can be verified through second-order
coherences of the optical field. Our proposal is relevant to
present day experimental setups. We estimate entanglement
storage lifetimes of milliseconds for the membrane-in-the-
middle geometry, which could be of technological interest.
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