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Abstract

Stress generation by myosin minifilaments is analyzed via simulation of their motion in a ran-

dom actin network. The stresses are overwhelmingly contractile, because minifilament equilibrium

positions having contractile stress have lower energy than those for expansive stress. Force chains

lead to unexpectedly large stresses.
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Myosin II, in combination with polymerized actin, produces contractile stresses in non-

muscle cells by moving directionally along actin filaments or polarized actin bundles. These

stresses are important for cell retraction during migration and for pinching-off during cy-

tokinesis. Myosin II generally forms “minifilaments” - bipolar polymers of tens of molecules

with active heads at both ends [1], which move toward the “barbed” ends of actin fila-

ments and away from the “pointed” ends. Recent experiments have shown that in vitro

actin-minifilament systems in a layer geometry with extra crosslinkers [2] or in a bundle

geometry without extra crosslinkers [3] generate contraction. In muscles, contraction fol-

lows straightforwardly from the ordered actin-myosin arrangement. But in the disordered

actin networks of non-muscle cells, the reason for contractilion is not clear. Minifilaments

moving on filament pairs with outward-pointing barbed ends should generate contraction,

while motion toward inward-pointing barbed ends should lead to expansion. There is no

structural evidence that the former case is more common. Several calculations [4–7] have

treated myosin and/or myosin minifilaments as contractile force dipoles. Support for this

approach comes from 1) a hydrodynamic theory of a linear actin bundle [8, 9], which found

contraction if myosins reaching the end of an actin filament remain there, and 2) calculations

for one-dimensional bundles [10, 11] and an active-gel model [12] suggesting that nonlineari-

ties such as buckling are crucial for contraction. However, there are no detailed calculations

of the effect of the actin network structure on the stress.

Here we evaluate the effects of the network structure via simulation of myosin minifil-

ament motion through a random two-dimensional actin network. We find overwhelmingly

contractile stress, because the contractile local myosin equilibria are more stable than the

expansive ones. This effect is independent of assumptions made about myosin behavior at

filament ends, and does not require buckling or nonlinear network elasticity. The calculated

network stresses can be much greater than suggested by the minifilament size and force,

because force chains transmit the myosin force to larger distances.

Our simulations build on the method of Ref. [13]. We first generate a two-dimensional

random network, whose filaments represent either single actin filaments or parallel bundles of

actin filaments. We place filaments with random positions and orientations in a 5µm × 5µm

simulation cell (see Fig.1). This size is likely an upper limit for biological relevance because

localized adhesions pin the actin network to the substrate and thus act as rigid boundaries.

Filaments extending outside the simulation cell are cropped. Static crosslinks are placed at
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filament intersections. Next the network is scanned for pairs of points on different filaments

that could be linked by myosin minifilaments. At pairs of points whose distance is within

10% of the average equilibrium minifilament length Lm, the two ends of a minifilament are

placed and new, mobile crosslinks are created. This is the network’s equilibrium state in the

absence of ATP-induced myosin motion.

The system is then relaxed according to an energy function containing the stretching

(Estretch) and bending (Ebend) energies of actin filaments and bundles, the minifilament

stretching energy Em, and the ATP-driven motor energy Emotor moving myosin heads toward

barbed ends. Estretch and Ebend are based on the lengths and relative angles of the filament

segments between crosslinks (“rods”):

Estretch = µ
Nr
∑

i=0

(∆Li)
2/2L0

i , (1)

where µ is the stretching modulus, ∆Li is a rod’s length change, L0

i is its initial length, and

Nr is the number of rods;

Ebend = κ
Nc
∑

j=0

(∆θj)
2/2Lj, (2)

where κ is the bending modulus, ∆θj is the angle between the two rods on the same filament

meeting at the crosslink j, and Lj is the average of the two rod lengths. Further,

Em = γ[(Lm)
2
− (L0

m)
2]2/2, (3)

where γ is a constant, and L0

m(Lm) is the minifilament’s initial (final) length. Finally,

Emotor = (M1 +M2)δFATP (4)

where Mj is the distance of myosin head j from the barbed end of its filament, in units of

the step size δ, and FATP is the myosin stall force. At crosslinks, filaments rotate freely.

Although the method and results are broadly applicable, we consider the case of single

(unbundled) actin filaments for concreteness. Then κ = kBT lp, where lp ≃ 15µm [14].

Because use of the experimental value of µ (45 nN [15]) leads to slow convergence of the

elastic relaxation, we use a smaller value µ = 600 pN , which is still large enough that

filament stretching is negligible compared to bending. We choose an actin filament length

of 2 µm, based on typical values away from the leading edge of cells, and Lm = 0.4 µm [1];

γ is varied over a range 60− 120 pN/µm3. We vary FATP over a range on the order of pN,

which corresponds to myosin heads with a low duty ratio.
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FIG. 1: Network as generated before relaxation. Region around minifilament (dumbbell) is enlarged

and arrows show the direction of myosin motion (toward the barbed end). Arrowheads at ends of

actin filaments represent pointed end; barbed end is drawn in grey. Here W = 5µm.

We evolve each random network to a stable steady state minimizing the total energy

Etot = Estretch + Ebend + Em + Emotor. Myosion motion is treated separately from elastic

relaxation because it is slower. For each set of values of Mj , the elastic degrees of freedom

are relaxed using a nonlinear conjugate-gradient method which gives finite (rather than

infinitesimal) crosslink and minifilament displacements. The myosin heads then move via a

steepest-descent algorithm driven by the derivatives ∂Etot/∂M1,2, until all of the forces have

reached a specificed tolerance. Although the energies in the model are quadratic functions

of Lm and ∆θ, the energy-minimization solution can yield nonlinear displacements. We

evaluate the spatially-averaged wall stress

σwall = −

∑

i

(~fi · ~ri)/2W
2. (5)

where ~fi is the force exerted by a rod on the wall, ~ri is the position of a rod-wall contact

point, and the sum is over all contact points. We make varying assumptions regarding the

motion of myosin heads past crosslinks and at filament tips.
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FIG. 2: Distribution of minifilament tension (a,c) and wall stress (b,d). In a) and b) myosins jump

over crosslinks; in c) and d) they are pinned. The mean wall stresses are 3.3σth and 2.0σth in (b)

and (d) respectively. Positive values of Tm and σwall refer to contraction. Histograms obtained

from 251 runs. Frame b) contains one more point at σwall ≃ 60σth, which was left out to improve

visibility.

Fig. 2 shows the distributions of the minifilament tension Tm and σwall for the case where

myosin heads reaching filament tips are pinned there. The wall tension is scaled by an elastic

theory prediction σth = −2fd/πW 2 obtained for a single small force dipole in a 2D circular

isotropic elastic patch of area π(W/2)2 (see Supplementary Material at [URL will be inserted

by publisher] for derivation). In a) and b), where myosin heads move past crosslinks, both

Tm and σwall are overwhelmingly contractile. The values of Tm peak around the myosin stall

force FATP . The fluctuations are caused by the varying angles between the minifilament and

the actin filaments, and the pinning of minifilaments at filament tips. In c) and d), stopping

myosin heads at crosslinks reduces the fraction of contractile configurations, but leaves the

stress mainly contractile; the average Tm is reduced by about 50%. In both cases, the values

of σwall sometimes exceed σth by as much as an order of magnitude. Allowing myosin heads

to leave filament tips enhances the contractile stress by about 50%.

The reason for the dominance of contractile Tm values is seen most clearly when minifila-
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ments come to equilibrium before reaching barbed ends. Contractile minifilament equilibria

have lower energy than expansive ones. A minifilament which starts in an expansive-stress

configuration tends to rotate and move until it reaches a stable contractile configuration.

To clarify this effect, we consider a completely rigid minifilament, interacting with two rigid

filaments at a relative angle of φ (see Fig. 3, inset) and distance of closest approach d (which

vanishes in two dimensions). The only energy in this case is Emotor. Fig. 3 shows its variation

as the minifilament moves from a symmetric equilibrium where it generates expansive stress.

The motion is described in terms of S1,2, the positions of the ends of the minifilament relative

to the crosslink (with the pointed-end direction taken positive); because Lm is fixed, S1 deter-

mines S2. Simple algebra shows that Emotor = FATP [ S1(1+cosφ)+
√

L2
m + d2 − S2

1 sin
2 φ ].

This has two extrema, and the one with S1 > 0 (which causes expansive stress) is unstable,

as indicated by the energy maxima at the two starting points in Fig. 3. From these local

maxima, the minifilament rotates in either of two directions breaking the initial symmetry,

indicated by the solid and dashed lines. After the minifilament has rotated far enough,

both of its ends move in the barbed-end direction, and the minifilament reaches a stable

contractile equilibrium. Comparison of Figs. 3(a) and 3(b) shows that this behavior persists

in three dimensions. In our simulation results for minifilaments which equilibrated without

becoming stuck, 61 of 62 runs resulted in contractile configurations like those of Fig 3a. In

the sole exception, the minifilament stopped in an expansive-stress configuration because the

two actin filaments that it impinged became bent enough to allow a local energy minimum.

This effect also implies that minifilaments which become stuck will often have rotated

to contractile configurations before becoming stuck. A population of minifilaments starting

with equal numbers of contractile and extensile members will then evolve into one biased

toward contraction. Thus in 146 of the 188 runs with stuck minifilaments, Tm was contrac-

tile at the time of sticking, and all but 6 of these retained the contraction after complete

relaxation. Of the remaining 42 runs, 27 transformed from extensile to contractile after

sticking, by mechanisms including rotation with one end fixed.

The mechanism described here is quite general. It requires large rotations of myosin

minifilaments, but not nonlinear actin network elasticity. Only 2% of the runs had extensile

myosins with filament bending angles larger than 10◦, showing that buckling is not a crucial

factor. Furthermore, doubling the filament bending modulus κ, corresponding to reduced

nonlinear effects, led to larger average values of Tm/FATP . The mechanism is also indepen-
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FIG. 3: Local equlibria of myosin minifilament moving between rigid actin filaments in two (a)

and three (b) dimensions. Inset in (a) shows the geometry; barbed ends are at the left. Here

EATP = δFATP , FATP = 1.9 pN , δ = 5.4 nm, Lm = 0.4 µm, and in frame (b) d = 0.2 µm. Solid

lines denote path followed by minifilament; dashed lines denote another possible path.

dent of specific assumptions regarding the behavior of myosin at filament ends. The main

requirement for contractility is that the network structure be sufficiently rigid to support

well-defined minifilament energy extrema. This requirement may explain why Ref. [2] found

that crosslinkers were needed for contractility.

The very large wall stresses seen in Fig. 2 indicate the importance of the network struc-

ture. We find that tensile force chains - linked chains of rods under high stress - cause the

stress enhancement. These are shown as the thick lines in the relaxed network of Fig. 4,

which are obtained by finding all connected paths of rods having tensile strain exceeding

a critical value of 0.01%. This mechanism is related to that of Ref. [7], in which force

propagation along actin filaments connected to the minifilament enhances the stress; here

the effect is greater because chains of filaments, rather than single filaments, are involved.

The effect found here may help bridge the gap between measured values of the tension in

cytokinesis, and the low theoretical values obtained in Ref. [7].

We have evaluated the robustness of the results by varying our input parameters and

assumptions. The stresses increase sublinearly with increasing FATP , but remain contractile

and greatly exceed σth. Doubling γ changes the mean stress by less than 1%; including a

crosslink rotation energy comparable to the bending energy changes it by only about 5%.
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FIG. 4: Force chain (thick lines) observed after elastic relaxation.

The mechanism is general enough to apply when dynamic network effects, such as actin

filament treadmilling (barbed-end growth matched by pointed-end depolymerization) and

crosslinker dynamics, are included. Since myosin heads move rapidly on actin filaments

[16], the minifilaments would equilibrate in a few seconds or less. The time for a filament

to treadmill is probably on the order at least tens of seconds. Typical crosslinker lifetimes

in cells are on the order of tens of seconds [17, 18]. Therefore the qualitative conclusions

reached here should be independent of treadmilling and crosslinker release.

In summary, directional motion of myosin minifilaments along actin network filaments,

toward low-energy contractile configurations, produces contractile stresses. This general

mechanism requires no specific orientation constraints in the network. Furthermore, the

myosin stress is magnified by force chains which transmit force directly to the boundary.

Future work should aim to evaluate the stresses more quantitatively in the context of a

cellular environment incorporating a three-dimensional branched network structure.

This work was supported by the National Institutes of Health under Grant R01

GM086882.

[1] E. D. Korn and J. A. Hammer, Annu. Rev. Biophys. Biophys. Chem 17, 23 (1988).

8



[2] P. M. Bendix, G. H. Koenderink, D. Cuvelier, Z. Dogic, B. N. Koeleman, W. M. Brieher,

C. M. Field, L. Mahadevan, and D. A. Weitz, Biophys. J. 94, 3126 (2008).

[3] T. Thoresen, M. Lenz, and M. L. Gardel, To be published (2011).

[4] F. C. MacKintosh and A. J. Levine, Phys. Rev. Lett. 100, 018104 (2008).

[5] D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh, Science 315 (2007).

[6] P. Chen and V. B. Shenoy, Soft Matter 7, 355 (2011).

[7] A. E. Carlsson, Phys. Rev. E 74, 051912 (2006).

[8] K. Kruse and F. Julicher, Phys. Rev. Lett. 85, 1778 (2000).

[9] K. Kruse and F. Julicher, Phys. Rev. E 67, 051913 (2003).

[10] A. Zemel and A. Mogilner, Phys. Chem. Chem. Phys. 11, 4821 (2009).

[11] M. Lenz and A. R. Dinner, arXiv:1101.1058 [physics.bio-ph].

[12] T. B. Liverpool, M. C. Marchetti, J.-F. Joanny, and J. Prost, Europhys. Lett. 85, 18007

(2009).

[13] D. A. Head, A. J. Levine, and F. C. MacKintosh, Phys. Rev. E. 68, 061907 (2003).

[14] G. H. Koenderink, Z. Dogic, F. Nakamura, P. M. Bendix, F. C. MacKintosh, J. H. Hartwig,

T. P. Stossel, and D. A. Weitz, PNAS 106, 15192 (2009).

[15] H. Kojima, A. Ishijima, and T. Yanagida, Proc. Natl. Acad. Sci. 91, 12962 (1994).

[16] R. P. Diensthuber, M. Muller, S. M. Heissler, M. H. Taft, I. Chizhov, and D. J. Manstein,

FEBS Lett. 585, 767 (2011).

[17] T. S. Fraley, C. B. Pereira, T. C. Tran, C. A. Singleton, and J. A. Greenwood, J. Biol. Chem.

280, 15479 (2005).

[18] D. Vignjevic, S. Kojima, Y. Aratyn, O. Danciu, T. Svitkina, and G. G. Borisy, J. cell. Biol.

174, 863 (2006).

9


