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The fundamental collective degree of freedom of fractional quantum Hall states is identified as
a unimodular two-dimensional spatial metric that characterizes the local shape of the correlations
of the incompressible fluid. Its quantum fluctuations are controlled by a topologically-quantized
“guiding-center spin”. Charge fluctuations are proportional to its Gaussian curvature.

PACS numbers: 73.43.Cd,73.43.Lp

In this Letter, I point out the apparently previously-
unnoticed geometric degree of freedom of the fractional
quantum Hall effect (FQHE), that fundamentally distin-
guishes it from the integer effect, and will provide the
basis for a new description of its collective properties as
a fluctuating quantum geometry.
The simplest model Hamiltonian for N interacting

electrons bound to a two-dimensional (2D) planar “Hall
surface” traversed by a uniform magnetic flux density is

H =

N
∑

i=1

1

2m
gabπiaπib +

1

A

∑

q

V (q)
∑

i<j

eiq·(ri−rj). (1)

Here ri − rj = (rai − raj )ea, [r
a
i , r

b
j ] = 0, are the relative

displacements of the particles on the 2D surface with
orthonormal tangent vectors ea, a = 1, 2, and πia = ea ·
πi are the components of the gauge-invariant dynamical
momenta, with commutation relations

[rai , πjb] = iδij~δ
a
b , [πia, πjb] = iδijǫab~

2/ℓ2B. (2)

I use Einstein summation convention: qar
a = q ·r (index

placement distinguishes real-space vectors ra from dual
(reciprocal) vectors qa); δ

a
b is the Kronecker symbol, and

ǫab = ǫab is the 2D antisymmetric Levi-Civita symbol. A
periodic boundary condition (pbc) can be imposed on a
fundamental region of the plane with area A = 2πℓ2BNΦ,
which restricts wavevectors q to the reciprocal lattice;
NΦ is an integer, and 2πℓ2B is the area through which a
London magnetic flux quantum h/e passes.
The parameters of the Hamiltonian are: (1) a Galileian

effective mass tensormgab, where gab is a positive-definite
“Galileian metric” with det g = 1 (i.e., a unimodular met-
ric) and inverse gab, and m > 0 is the effective mass
that controls the cyclotron frequency ωB = ~/mℓ2B; (2)
V (q) which is the Fourier transform of an unretarded
translationally-invariant two-body interaction potential.
In principle, the real function V (q) is the Fourier trans-

form of the long-ranged unscreened Coulomb potential,
with the small-q behavior

lim
λ→0

λV (λq) → e2

2ε
(g̃abqaqb)

−1/2, (3)

where g̃ab is the inverse of a unimodular Coulomb met-

ric g̃ab, controlled by the dielectric properties of the sur-
rounding 3D insulating media, while the large-q behavior

of V (q) is controlled by the quantum well that binds elec-
trons to the surface. The singularity of V (0) does not af-
fect incompressibility, and can be screened by a metallic
plane placed parallel to the surface.
There is no fundamental reason for the Coulomb and

Galileian metrics to coincide, unless there is an atomic-
scale discrete (n > 2)-fold rotational symmetry of the
surface, and no tangential magnetic flux. I will argue
that the usual implicit assumption of rotational symme-
try hides key geometric features of the FQHE.
In the presence of the magnetic field, the canonical de-

grees of freedom {ri,pi} are reorganized into two inde-
pendent sets, the dynamical momenta {πi}, which I will
call “left-handed” degrees of freedom, and the “guiding
centers” {Ri}, the “right-handed” degrees of freedom,

Ra
i = rai − ~

−1ǫabπibℓ
2
B, [Ra

i , R
b
j ] = −iδijǫ

abℓ2B, (4)

with [Ra
i , πjb] = 0. The pbc further restricts the guiding-

center variables to the set of unitary operators ρq,i =
exp iq ·Ri, which obey the Heisenberg algebra

ρq,iρq′,i = ei
1

2
q×q

′ℓ2Bρq+q′,i, q × q′ ≡ ǫabqaq
′
b; (5)

reciprocal vectors q, q′ compatible with the pbc obey
(exp iq × q′ℓ2B)

NΦ = 1. The pbc can be expressed as

(ρq,i)
NΦ |Ψ〉 = (ηq)

NΦ |Ψ〉 (6)

for all states in the Hilbert space, where ηq = 1 if 1
2q

is an allowed reciprocal vector, and ηq = −1 otherwise.
This leads to the recurrence relation

ρq+Nφq
′,i =

(

ηq′ei
1

2
q×q

′ℓ2B

)NΦ

ρq,i = ±ρq,i. (7)

For a given particle label i, the set of independent oper-
ators ρq,i can be reduced to a set of N2

Φ operators where
q ∈ BZ takes one of a set ofN2

Φ distinct values that define
an analog of a “Brillouin zone”. Let

δ2
q,q′ ≡ 1

NΦ

∑

q′′

′
eiq

′′×(q−q
′). (8)

(Primed sums are over the BZ.) Then δ2
q,q′ = 0 if q and q′

are distinct, and has the value NΦ if they are equivalent;
with this definition δ2

q,q′ becomes 2πδ2(qℓB − q′ℓB) in



2

the limit NΦ → ∞, where δ2(x) is the 2D Dirac delta-
function. It is convenient to choose the BZ so it has
inversion symmetry: q ∈ BZ → −q ∈ BZ, and ρq=0,i

is the identity. The set of N2
Φ − 1 operators {ρq,i, q ∈

BZ, q 6= 0} are the generators of the Lie algebra SU(NΦ).
Both ρq,i and also (as noted by Girvin, MacDonald and
Platzman[1]) the “coproduct” ρq =

∑

i ρq,i, obey

[ρq, ρq′ ] = 2i sin(12q × q′ℓ2B)ρq+q′ . (9)

In this form of the Lie algebra, the quadratic Casimir is

C2 =
1

2NΦ

∑

q 6=0

′
ρqρ−q =

N(N2
Φ −N)

2NΦ
+
∑

i<j

Pij , (10)

where Pij exchanges guiding centers of particles i and
j. For N = 1, the ρq,i form the NΦ-dimensional funda-
mental (defining) SU(NΦ) representation of one-particle
states of a Landau level, with C2 = (N2

Φ − 1)/2NΦ.
The high-field condition is defined by

~ωB ≫ 1

A

∑

q

V (q)f(q)2, f(q) = e−
1

4
q2gℓ

2

B , (11)

where f(q) is the lowest-Landau-level form-factor, and
q2g ≡ gabqaqb. In this limit, the low-energy eigenstates
of the model have all the particles in the lowest Landau
level, and can be factorized into a simple unentangled

product of states of right-handed and left-handed degrees
of freedom:

|Ψ0,α〉 = |ΨL
0 (g)〉 ⊗ |ΨR

α 〉, (12)

where |ΨL
0 (g)〉 is a trivial harmonic-oscillator coherent

state, fully symmetric under interchange of the dynam-
ical momenta of any pair of particles, and parametrized
only by the Galileian metric gab; its defining property is

ai|ΨL
0 (g)〉 = 0, ai ∝ ωa(g)πia, i = 1, . . . , N, (13)

where the complex unit vector ωa(g) is obtained by so-
lution of the generalized Hermitian eigenvector problem

ωa(g) = gabω
b(g) = iǫabω

b(g), ωa(g)
∗ωa(g) = 1. (14)

In contrast, the non-trivial states |ΨR
α 〉 are the eigenstates

of the “right-handed” (guiding-center) Hamiltonian

HR =
1

2A

∑

q

V (q)f(q)2ρqρ−q. (15)

The reduction of the problem by discarding “left-
handed” degrees of freedom, “frozen out” by Landau
quantization, makes numerical study of the problem by
exact diagonalization of HR for finite N,NΦ tractable.
This may also be characterized as a “quantum geome-
try” description: once the “left-handed” degrees of free-
dom are removed, the notion of locality, fundamental to

both classical geometry and Schrödinger’s formulation of
quantum mechanics, is absent. The commutation rela-
tions (4) imply a fundamental uncertainty in the “posi-
tion” of the particles, now only described by their guiding
centers. A Schrödinger wavefunction can only be con-
structed after “gluing” |ΨR

α 〉 together with some |ΨL〉,
after which the composite state can be projected onto si-
multaneous eigenstates of the commuting set {ri}: e.g.,

Ψα({ri}, g) = 〈{ri}|ΨL
0 (g)〉 ⊗ |ΨR

α 〉. (16)

Note that the construction (16) of a Schrödinger wave-
function involves an extraneous quantity (gab) that is not
directly determined by |ΨR

α 〉 itself, and thus is a non-
primitive construction that does not represent |ΨR

α 〉 in its
purest form. This suggests a reconsideration of the mean-
ing of the “Laughlin state”, usually presented in the form
of the “Laughlin wavefunction”[2], which is fundamental
to current understanding of the FQHE.
The conventional presentation of FQHE states is as an

N -particle Schrödinger wavefunction with the form

Ψ({ri}) = F ({zi})
N
∏

i=1

e−
1

2
z∗

i zi , (17)

where zi = ωa(g)r
a
i /

√
2ℓB. Such wavefunctions, formu-

lated in the “symmetric gauge”, obey (13) with ai ≡
1
2zi + ∂/∂z∗i . The original Laughlin wavefunction[2] was
the polynomial

F ({zi}) = F q
L({zi}) ≡

∏

i>j

(zi − zj)
q; (18)

it was subsequently adapted[3] to a pbc with the form

F q
L,α({zi}) =

∏

i>j

w(zi − zj)
q

q
∏

k=1

w((
∑

izi)− ak,α), (19)

where w(z) is given in terms of an elliptic theta function:
w(z) = θ1(πz/L1|L2/L1) exp(z

2/2NΦ), with L1L
∗
2−L∗

1L2

= 2πiNΦ (the wavefunction is (quasi) periodic under zi
→ zi+mL1+nL2). The additional q parameters ak,α of
(19), with

∑

k ak,α = 0, characterize the q-fold topologi-
cal degeneracy of the Laughlin state with a pbc.
The Laughlin wavefunction was originally presented

as a “variational wavefunction”, albeit one with no
continuously-tunable parameter, since q is an integer
fixed by statistics. Its initial success was that, as a “trial
wavefunction”, it had a lower Coulomb energy than ob-
tained in Hartree-Fock approximations, and explained
the existence of a strong FQHE state at ν ≡ N/NΦ =
1/3, but not at ν = 1/2. In the wavefunction language,
its defining characteristic is that, as a function of any
particle coordinate zi, there is an order-q zero at the lo-
cation of every other particle, which heuristically “keeps
particles apart”, and lowers the Coulomb energy.
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Subsequent to its introduction, the Laughlin state’s
essential validity was further confirmed by this author’s
observation[4] that, at ν = 1/q, it is also uniquely charac-
terized as the zero-energy eigenstate of a two-body “pseu-
dopotential Hamiltonian”

HR =

q−1
∑

m=0

VmPm(g), Vm > 0, (20)

where

Pm(g) =
1

NΦ

∑

q

Lm(q2gℓ
2
B)e

−
1
2 q

2

gℓ
2

Bρqρ−q, (21)

where Lm(x) is a Laguerre polynomial. Numerical finite-
size diagonalization[5] for q = 3 showed that this HR

had the gapped excitation spectrum of an incompressible
FQHE state, and that this gap did not close along a
path that adiabatically interpolated between it and the
Hamiltonian of the Coulomb interaction with g̃ab = gab.
This raises the question that does not seem to have

been previously considered: what if the “Coulomb met-
ric” g̃ab and the “Galileian metric” gab do not coin-
cide? The “pseudopotential” definition of the Laughlin
state (as opposed to the Laughlin wavefunction) defines
a continuously-parametrized family of ν = 1/q Laughlin
states |Ψq

L,α(ḡ)〉 by

Pm(ḡ)|Ψq
L,α(ḡ)〉 = 0,m < q. (22)

The continuously-variable parameter here is a unimod-
ular guiding-center metric ḡab that is in principle dis-
tinct from the Galileian metric gab, and is not fixed by
the one-body physics of the Landau orbits. Physically, it
characterizes the shape of the correlation functions of the
Laughlin state. If the shape of Landau orbits is used as
the definition of “circular”, the correlation hole around
the particles deforms to “elliptical” when ḡab 6= gab.
If a wavefunction (13) is constructed by “gluing to-

gether” |ΨL
0 (g)〉 with the “Laughlin state” |ΨR〉 =

|Ψq
L,α(ḡ)〉, it does not correspond to the Laughlin wave-

function (19) unless ḡab = gab, as there is no longer a q’th
order zero of the wavefunction when zi = zj . Despite this,
I will not call |Ψq

L(ḡ)〉 with ḡab 6= gab a “generalization” of
the Laughlin state, but propose it as a definition of the
family of Laughlin states that exposes the geometrical
degree of freedom ḡab hidden by the wavefunction-based
formalism. I argue that FQHE states should be described
completely within the framework of the “quantum geom-
etry” of the guiding-center degrees of freedom alone, and
no “preferred status” should be accorded to the metric
choice ḡab = gab. If the states |Ψq

L,α(ḡ)〉 are used as vari-
ational approximations to the ground state of a generic
HR given by (15), ḡab must be chosen to minimize the
correlation energy E(ḡ) = 〈Ψq

Lα(ḡ)|HR|Ψq
Lα(ḡ)〉. If the

Coulomb (g̃ab) and Galileian (gab) metrics coincide, the
energy will be minimized by the choice ḡab = g̃ab= gab;

otherwise, ḡab will be a compromise intermediate between
the two physical metrics.
A more profound consequence of the identification of

the variable geometric parameter ḡab follows from the ob-
servation that the correlation energy will be a quadratic
function of local deformations ḡab(r, t) around the min-
imizing value, whether or not this is equal to gab. This
unimodular metric, or “shape of the circle” defined by the
correlation function of the FQHE state, may be identi-
fied as the natural local collective degree of freedom of a
FQHE state (defined on lengthscales large compared to
ℓB), and not merely a variational parameter.
In its finite-N polynomial form (18), the Laughlin

state |Ψq
L(g)〉 is an eigenstate of LR(g, 0) where LR(g, r)

= gabΛ
ab(r) generates rotations of the guiding-centers

about a point r; here Λab(r) = Λba(r) are the three gen-
erators of area-preserving linear deformations[7] of the
guiding-centers around r:

Λab(r) =
1

4ℓ2B

∑

i

{δRa
i (r), δR

b
i (r)}, (23)

with δRa
i (r) ≡ Ra

i − r. Leaving r implicit, these obey
the non-compact Lie algebra[7]

[Λab,Λcd] = − i

2

(

ǫacΛbd + ǫbdΛac + a ↔ b
)

, (24)

which is isomorphic to SO(2, 1), SL(2, R), and SU(1, 1),
with a Casimir C2 = − 1

2 detΛ ≡ − 1
4ǫacǫbdΛ

abΛcd.
FQHE states with ν = p/q can be simply understood

as condensates of “composite bosons”[6] which are “el-
ementary droplets” of the incompressible fluid consist-
ing of p identical charge-e particles “bound to q London
flux quanta” (i.e., occupying q one-particle orbitals of
the Landau level), which behave as a boson under in-
terchange. This requires that the Berry phase cancels
any bare statistical phase: (−1)pq = ξp, where ξ = −1
(+1) for fermions (bosons). For a condensate of charge-pe
objects, the elementary fractionally-charged vortex has
charge ±e∗ = ±(νe2/h) × (h/pe) = ±e/q. This work
aims to extend the description of the “composite boson”
by giving it (2D orbital) “spin” and geometry.
Polynomial FQHE wavefunctions like (18) that de-

scribe N̄ = N/p = NΦ/q elementary droplets are generi-
cally eigenstates of LR(g, 0) with eigenvalue 1

2pqN̄
2+s̄N̄ ,

where s̄ is a variant of the so-called “shift” that I will
identify as a fundamental FQHE parameter, the guiding-
center spin, that characterizes the geometric degree of
freedom of FQHE states. It can also be obtained as the
limit N̄ → ∞ of

s̄ =
1

N̄

qN̄−1
∑

m=0

(m+ 1
2 )(nm(ḡ, r)− ν), (25)

where nm(ḡ, r), m ≥ 0 are the occupations of guiding-
center orbitals defined as the eigenstates of LR(ḡ, r).
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Note that the “superextensive” (∝ N̄2) contribution to
the eigenvalue derives from the uniform background den-
sity contribution νδ2

q,0 to ρq, and can be removed (reg-

ularized) by defining Λab(r) in the thermodynamic limit
NΦ = qN̄ → ∞ using the limit of the q 6= 0 SU(Nφ) gen-
erators alone, which become continuous functions ρ(q) of
q, with limλ→0 ρ(λq) = 0. Then

Λab(r) = lim
λ→0

(

−1

2

1

(λℓB)2
∂

∂qa

∂

∂qb
ρ(λq)e−iλq·r

)

. (26)

The Laughlin state |Ψq
L(ḡ)〉 is an eigenstate of ḡabΛ

ab(r)
with s̄ = 1

2 (1 − q). Note that for fermionic particles (ξ
= −1), s̄ is odd under particle-hole transformations, and
vanishes when the Landau-level is completely filled (here
q = 1). A spin-statistics selection rule requires that

(−1)2s̄(−1)2s = (−1)pq = ξp, (−1)2s = (−1)p, (27)

where s is the (orbital) “Landau-orbit spin” of the ele-
mentary droplet (s = − 1

2 ,− 3
2 , . . . for particles with Lan-

dau index 0, 1, . . .). The expression for s̄ may now be
inverted to define the (local) unimodular guiding-center
metric ḡab(r) by the expectation value

lim
N̄→∞

1

N̄
〈ΨR|Λab(r)|ΨR〉 = 1

2 s̄ḡ
ab(r), det ḡ = 1, (28)

so if ρ̄(r) is the local droplet density, 1
2 s̄ρ̄(r)g

ab(r) is the
local density of the deformation generator.
The quantization of 2s̄ as an integer is a topological

property deriving from the incompressibility of FQHE
states. A simple picture that is reminiscent of Jain’s
notion of “quasi-Landau-levels”[8] supports this: the “el-
ementary droplet”, with a shape fixed by ḡab(r), sup-
ports q single-particle orbitals with guiding-center spins
1
2 ,

3
2 , . . . ,

q−1
2 . The way these are occupied by the p parti-

cles of the droplet, determines the guiding-center spin of
the droplet as the actual total guiding center spin of the
configuration, minus that (12pq) given by putting p/q par-
ticles in each orbital. The repulsive exchange and corre-
lation fields of particles outside the droplet will give each
of the internal levels a mean energy for orbiting around
an effective potential minimum at its center. The droplet
will be stable, with a quantized guiding center spin that
is adiabatically conserved as the droplet changes shape,
provided there is a finite positive energy gap between the
highest occupied and lowest empty single-particle state in
the droplet. Collapse of this gap implies that the system
has become compressible with an unquantized or inde-
terminate value of s̄.
The geometrical degree of freedom exposed here also

suggests a new look at the problem of formulating a con-
tinuum description of incompressible FQHE states. Else-
where, I will present a continuum description combin-
ing Chern-Simons fields with the geometry field ω̄a(r, t),
where ḡab = ω̄∗

aω̄b+ ω̄∗
b ω̄a, but mention here some funda-

mental formulas that emerge. First, the electric charge
density is given by peρ̄(r), where ρ̄(r) is the local ele-
mentary droplet (composite boson) density, and

ρ̄(r, t) =
1

2πpq

(pe

~
B(r) + s̄K(r, t)

)

, (29)

Here B(r) is the externally-imposed 2D (normal) mag-
netic flux density, (assumed to be time-independent,
but not necessarily spatially uniform), and K(r, t) is
the instantaneous Gaussian curvature of the unimodu-
lar guiding-center-metric field ḡab(r, t), given by K =
ǫab∂aΩ

ḡ
b , Ω

ḡ
a = ǫbcω̄∗

b∇ḡ
aω̄c, where Ωḡ

a is the spin connec-
tion gauge-field and ∇ḡ

a is the covariant derivative (Levi-
Civita connection) of ḡab. This formula could perhaps
have been anticipated from the work of Wen and Zee[9],
who considered coupling Chern-Simons fields to curva-
ture, but the curvature they apparently had in mind was
not the collective dynamical internal degree of freedom
described here, but that due to placing the FQHE system
on a curved 2D surface embedded in 3D Euclidean space,
as in formal calculations of the FQHE on a sphere sur-
rounding a monopole[3, 4]. The second formula is that
the canonical conjugate of the geometry field ω̄a(r) is

π̄a
ω̄(r) = ~s̄ρ̄(r)ǫbaω̄b(r)

∗, (30)

so the momentum density (translation generator den-
sity) is π̄b

ω̄∇ḡ
aω̄b = ~sρ̄Ωḡ

a. These formulas parallel those
of quantum Hall ferromagnets, with guiding-center spin
and Gaussian curvature replacing true electron spin and
Berry curvature. On large lengthscales, the elementary
charge e∗ = ±e/q quasiparticles appear as rational cone-
singularities of the metric field ḡab(r, t) with localized
Gaussian curvature K = ±4π/(2s̄).

In summary, the prevalent assumption of rotational
invariance of FQHE fluids conceals a fundamental geo-
metric degree of freedom, the shape of their correlations,
described by a unimodular spatial metric field that ex-
hibits quantum dynamics.
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