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We present an experimental and theoretical study of the chaotic ionization of quasi-one-
dimensional potassium Rydberg wavepackets via a classical phase-space turnstile mechanism. Turn-
stiles form a general transport mechanism for numerous chaotic systems, and this study explicitly
illuminates their relevance to atomic ionization. We create time-dependent Rydberg wavepackets,
subject them to alternating applied electric-field pulses, and measure the electron survival probabil-
ity. Ionization depends not only on the initial electron energy, but also on the classical phase-space
position of the electron with respect to the turnstile — that part of the electron packet inside the
turnstile ionizes after the applied ionization sequence, while that part outside the turnstile does not.
The survival data thus encode information on the geometry and location of the turnstile, and are
in good agreement with theoretical predictions.

PACS numbers: 32.80.Rm, 05.45.Gg, 05.45.Ac, 45.50.Pk

Chaotic behavior appears in diverse complex systems,
over an enormous range of physical scales, including the
formation of weather patterns, mixing of fluids, firing
of neurons, and transport in the solar system. Among
these, photoabsorbtion and ionization in atomic gasses
have proven to be excellent testbeds for both classical
and quantum chaos [1]. For example, oscillations in the
photoabsorption spectra of atoms in applied fields have
been intimately linked to chaotic electron orbits [2], and
resonant islands have proven to be barriers to microwave
ionization [3]. More recently, such resonant islands have
been used to trap, control, and engineer electronic Ry-
dberg wave packets [4]. Such experiments highlight the
utility of highly excited Rydberg electrons as high reso-
lution probes of classically chaotic phase spaces.

This Letter focuses on revealing the time-dependent

mechanism underlying the chaotic ionization of an elec-
tron wave packet. To achieve this, we investigate the
ionization dynamics under one driving cycle, rather than
measuring the total ionization fraction after many driv-
ing cycles (as in prior microwave experiments [1, 3].) The
experimental protocol is based on an earlier theoretical
proposal [5] (see also Refs. [6, 7]), recognizing that the
ionization mechanism can be explained in terms of a ho-
moclinic tangle and its corresponding turnstile [8, 9]. The
turnstile is a classical structure in phase space that pro-
motes the electron from a bound to an unbound state,
thereby forming the critical step in the ionization pro-
cess. Turnstiles have been theoretically applied to chaotic
transport in a wide variety of physical systems [9]. How-
ever, experimental investigations are significantly more
limited, with notable studies of chaotic or turbulent flu-
ids [10] (including recent work on Lagrangian coher-
ent structures [11, 12]) and of optical microcavities [13].
However, to our knowledge, the role of turnstile struc-
ture on atomic ionization has not been experimentally
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FIG. 1: (Color online.) (a) The experimental timing sequence
for the applied electric force F (t). The first pulse is the focus-
ing pulse. The remaining three are the ionization pulses. (b)
The pulse sequence used in the 1D simulations is a square-
wave version of the experimental sequence.

demonstrated previously. We present data on the obser-
vation of a phase-space turnstile in a system consisting of
highly excited quasi-one-dimensional Rydberg atoms [14]
exposed to alternating electric-field pulses. The ioniza-
tion probability depends not only on the electron energy,
but, crucially, on the phase-space position of the elec-
tronic state with respect to the turnstile at the moment
the ionization pulses are applied. Our measurements
prove to be a sensitive probe of the classical phase-space
position and shape of the turnstile.

Experimental protocol and data: Potassium
atoms are first excited to a high principal quantum
number (n ≈ 306 or n ≈ 350) quasi-one-dimensional
Rydberg state using the protocol detailed in Ref. [14].
A small electric field “focusing” pulse, with integrated
scaled strength ∆p̃ = n∆p = n

∫
F dt = 0.08, is then ap-

plied to the valence electron, with the force directed to-
ward the nucleus (Fig. 1a). (Tildes denote scaled atomic
units: r̃ = r/n2, t̃ = t/n3, Ẽ = n2E.) This creates
a nonstationary electronic wave packet that undergoes
strong periodic focusing near the outer classical turning
point. After some time delay td, a sequence of three alter-
nating positive and negative ionization pulses is applied
(Fig. 1a). These are much stronger than the focusing
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FIG. 2: (Color online.) Measured survival probabilities as
a function of delay time td for the values of peak-to-peak
duration T indicated. Squares denote experimental data; red
lines are sinusoidal fits [15].

pulse, with ∆p̃ = 0.25,−0.5, 0.25. The fraction of Ry-
dberg atoms that survive as a function of delay time td
is measured using field ionization. Figure 2 shows re-
sults for both n ≈ 306 (left column) and n ≈ 350 (right
column). The delay time td is increased from 0ns to
20 ns, and the peak-to-peak duration T of the ionization
sequence is adjusted between 5 ns and 15 ns. The pulse
durations are all fixed at 600ps.

The data in Fig. 2 show a clear periodic behavior.
This is elucidated by fitting to a sinusoid P (td) = P0 +
A sin(2πtd/T0 +φ) and extracting the fitting parameters
P0, A, T0, and φ. The first three parameters are recorded
in Table I; the last is plotted in Fig. 3. The following fea-
tures stand out. (i) The oscillation period T0 is nearly
independent of T and matches the classical Kepler pe-
riod TK of the original state; for n = 306, TK = 4.35ns;
for n = 350, TK = 6.52ns. (ii) The parameter P0 is the
survival probability averaged over td. It and the oscil-
lation amplitude, A, do not depend strongly on T . (iii)
The phase shift φ varies considerably with T , as seen in
Fig. 3 or in the shift of the vertical lines in Fig. 2.

A classical trajectory Monte Carlo (CTMC) simula-
tion is sufficient to reproduce the essential experimental
signatures. We use a one-dimensional hydrogenic model
[16] with the square-wave forcing shown in Fig. 1b. The
fitting parameters derived from this model are included
in Table I and Fig. 3 under the label “1D” and are in

n T (ns) P0 A T0(ns)

exp 1D 1D’ exp 1D exp 1D

306 5 0.648 0.647 0.633 0.10 0.29 4.363 4.369

7 0.620 0.636 0.630 0.09 0.26 4.286 4.419

9 0.620 0.659 0.663 0.08 0.22 4.357 4.459

11 0.613 0.688 0.693 0.09 0.17 4.348 4.514

350 5 0.697 0.702 0.692 0.14 0.35 6.572 6.559

7 0.638 0.648 0.623 0.13 0.37 6.504 6.566

11 0.603 0.633 0.624 0.13 0.32 6.372 6.607

15 0.679 0.670 0.669 0.12 0.24 6.663 6.771

TABLE I: Fit parameters P0, A, and T0 from the experiment
(exp), 1D CTMC theory (1D), and 1D lobe analysis (1D’).

T
(
n
s
)

phase φ phase φ

5

10

−2 0 2

1D

exp.
1D’

n=306 5

10

15

−2 0 2

1D

exp.
1D’

n=350

FIG. 3: (Color online.) Phase shift as a function of T . Small
displacements in T are applied to 1D and experimental data
to visually separate the data markers [15].

good agreement with the experimental data. As shown
below, these parameters reflect the underlying phase-
space geometry. The amplitude A, however, depends
more strongly on the details of the initial electronic state,
and the experimental oscillation amplitudes are some-
what less than the model predicts.

Connection to turnstile geometry: We now
demonstrate how the experimental data reveal the pres-
ence of a classical phase-space turnstile and how the turn-
stile geometry provides a qualitative and quantitative
framework for understanding trends in the data. Con-
sider first the electron dynamics when subjected to peri-
odic forcing, in which the single square-wave forcing cycle
of duration T (Fig. 1) is replaced by a periodic repetition
(Fig. 4 inset). A stroboscopic picture of the dynamics is
defined by the Poincaré map (r, pr) 7→ (r′, p′r), which
takes the radial position and momentum of the electron
at a given time and returns their values one forcing pe-
riod T later. This map has a fixed point at r = ∞
[5] to which stable and unstable manifolds are attached
(Fig. 4). (A stable/unstable manifold W s/Wu consists
of those phase-space points that converge to the fixed
point in the positive/negative time direction [9].) The
stable and unstable manifolds together form a homoclinic

tangle [9](a “broken separatrix”), which defines the in-
ner gray zone (roughly the “bound” electron states) and
the outer white zone (the “ionized” states.) The tangle
also defines regions called lobes, which fall into two cate-
gories, those that govern electron capture (Cn) and those
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FIG. 4: (Color online.) The inset shows the periodic forc-
ing F (t) used to compute the homoclinic tangle in the main
panel. Here, the stable/unstable manifolds W s/W u are the
thick/thin red/blue lines. The forcing parameters are chosen
for pedagogical clarity and are not the experimental values
used in subsequent figures.

that govern electron escape/ionization (En). Under the
forcing dynamics, En 7→ En+1 and Cn 7→ Cn+1. The
critical step for ionization is the E−1 7→ E0 transition
as this promotes electron states from bound to ionized.
An analogous process C0 7→ C−1 governs capture, and
collectively this mechanism is called a phase-space turn-
stile [8]. Being only interested in ionization here, we call
E−1 the “turnstile lobe”. Its size, shape, and position
govern the electron survival probability [17].

Following the focusing pulse, the electronic state is no
longer stationary. The corresponding classical ensemble
has a narrow energy distribution ρ(Ẽ) (Fig. 6) centered
at Ẽ = −0.5 with ∆Ẽ = 0.053. It forms a partially
localized, or “focused”, ensemble that hugs and moves
along the Ẽ = −0.5 shell. (Unless otherwise noted, the
remainder uses the n = 350 case.) The observed oscil-
lations in survival probability (Fig. 2) can now be un-
derstood as the ensemble passing in and out of the E−1

lobe—survival is higher when the bulk is outside E−1

and smaller when inside. Figure 5 illustrates this with
snapshots of the ensemble at a sequence of times: b) Im-
mediately after the focusing pulse td = 0; the ensemble
roughly corresponds to the energy shell shifted slightly
downward. c) The first survival maximum; the ensemble
is almost entirely outside E−1, resulting in negligible ion-
ization. d) The first survival minimum; the ensemble has
reflected once off the nucleus and now lies almost entirely
within E−1, resulting in large ionization. e) The second
maximum. Since the ensemble trajectories lie close to
the original energy shell, the survival oscillation period
T0 is approximately the Kepler period TK .

Next consider the average survival probability P0;
1 − P0 can be interpreted as the fraction of time a tra-
jectory spends inside E−1, averaged over the focused en-
semble. To visualize this, it is easiest to work in the

canonical coordinates Ẽ (electron energy p̃r
2/2 − 1/r̃)

and t̃ (time to reach the nucleus). Consider Fig. 6a. The
bottom left curve is the negative Kepler period, forming
the left phase-space boundary. It is physically identi-
fied with the right vertical boundary line t̃ = 0, which
represents nuclear impact. Time evolution in these coor-
dinates consists of uniform motion rightward along hor-
izontal lines; when a trajectory reaches t̃ = 0, it jumps
back to t̃ = −T̃K . The lobe E−1 intersects the energy
shell Ẽ = −0.5 in one large segment. (See Fig. 6b,
T = 5 ns, for intersection segments.) The lobe has two
“horns”, which stretch downward, intersecting the left
boundary. From here, they re-emerge as two tendrils
at the right boundary (taking advantage of the periodic
boundary conditions), which reach up and again inter-
sect Ẽ = −0.5 in several short segments. In energy-time
coordinates, the fraction of time a trajectory of energy
Ẽ spends inside E−1 equals the total length of the inter-
section between E−1 and the line of constant Ẽ, divided
by T̃K . Since ∆Ẽ for the focused ensemble is small, we
need only consider Ẽ = −0.5, with T̃K = 2π. Thus,
1−P0 ≈ L/2π, where L/2π = 0.308 is the total length of
the intersection segments in Fig. 6b, T = 5 ns. Thereby,
P0 = 0.692, as recorded in Table I column 1D’, and in
excellent agreement with the experimental value 0.697.

Previous work [5] showed that as T increases (with
pulse strength and duration fixed), the lobe in Fig. 6a
shifts leftward. This is reflected in Fig. 6b, which shows
the intersections of E−1 with the Ẽ = −0.5 line for in-
creasing values of T . In particular, the primary wide
segment shifts left with increasing T . However, another
critical effect is the increase in number and length of the
shorter segments on the right. As above, these segments
are the intersections with the horns, which have wrapped
around. Physically, the wide segment contains trajecto-
ries that strike the nucleus once during the ionization
sequence, whereas the shorter segments contain trajec-
tories that strike the nucleus multiple times during ion-
ization. As more time elapses between ionization pulses,
there is more time for trajectories to strike the nucleus,
and the relative importance of these ionization pathways
increases. By T = 15ns, 24% of the ionizing trajecto-
ries have multiple nuclear impacts. The corresponding
P0 values, computed from the interval lengths in Fig. 6b,
are recorded in Table I column 1D’ for varying T . These
agree well with the 1D and experimental data. Were ion-
ization via multiple impacts not included, this agreement
would be notably worse, especially for T = 15ns.

The leftward shift of the intervals in Fig. 6b with in-
creasing T explains the phase shift in Fig. 3. The large
dots in Fig. 6b are the average positions 〈t̃〉 of the escap-
ing points (where the average is taken using the repeated
segments on the left.) To account for the initial position
of the focused ensemble, the values of 〈t̃〉 are plotted as
−〈t̃〉 − 3π/2 in Fig. 3, where they track the changes in
phase seen as T increases. Ionizing trajectories that im-
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FIG. 5: (Color online.) (a) Experimental survival probability for n = 350, T = 5ns [15]. (b)–(d). Distribution of the classical
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Ẽ
T

(
n
s
)

−8 −6 −4 −2 0

−1.5

−1

−0.5

0

E
−1

(a)

ρ( Ẽ)
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FIG. 6: (Color online.) Panel (a) shows the E
−1 lobe in

energy-time coordinates. ρ(Ẽ) illustrates the distribution of
energies in the focused ensemble. Panel (b) shows the in-

tersection segments of the E
−1 lobe with the Ẽ = −0.5 line

for different T values. The dashed line is positioned at the
negative Kepler period −2π and the rightmost segments are
repeated on the left taking advantage of the periodic bound-
ary conditions. The large dots are the average positions of
the segments.

pact the nucleus multiple times again play an important
role, as they shift the average dot leftward in Fig. 6b.
Conclusions: Following previous theoretical analy-

sis [5], the present experiments demonstrate that the
turnstile lobe is a critical mechanism for promoting
bound electronic states to ionization, the turnstile geom-
etry providing a convenient framework for explaining the
experimental results. More broadly, the results demon-
strate that driven atomic systems provide a convenient
laboratory to explore the turnstile mechanism, common
to a wide variety of physical systems exhibiting chaotic
transport.
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