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We introduce noncooperatively optimized tolerance (NOT),a game theoretic generalization of highly opti-
mized tolerance (HOT), which we illustrate in the forest fireframework. As the number of players increases,
NOT retains features of HOT, such as robustness and self-dissimilar landscapes, but also develops features of
self-organized criticality (SOC). The system retains considerable robustness even as it becomes fractured, due
in part to emergent cooperation between players, and at the same time exhibits increasing resilience against
changes in the environment, giving rise to intermediate regimes where the system is robust to a particular distri-
bution of adverse events, yet not very fragile to changes.

Introduction Highly optimized tolerance (HOT) and self-
organized criticality (SOC) have received considerable atten-
tion as alternative explanations of emergent power-law cas-
cade distributions [1, 2]. The SOC model [1, 3, 4] posits that
systems can naturally arrive at criticality and power-law cas-
cades, independently of initial conditions, by following sim-
ple rule-based processes. Among the important features of
SOC are (a) self-similarity and homogeneity of the landscape,
(b) fractal structure of cascades, (c) a small power-law expo-
nent (i.e., heavier tails), and (d) low density and low yield
(e.g., in the context of the forest fire model, described be-
low). HOT [2, 5–7], in contrast, models complex systems
that emerge as a result of optimization in the face of persis-
tent threats. While SOC is motivated by largely mechanical
processes, the motivation for HOT comes from evolutionary
processes and deliberately engineered systems, such as the
electric power grid. The key features of HOT are (a) a highly
structured, self-dissimilar landscape, (b) a high power-law ex-
ponent, and (c) high density and high yield [6].

HOT and SOC can be cleanly contrasted in the context of
the forest fire model [2, 4], which features a grid, usually two-
dimensional, with each cell being a potential site for a tree.
Intermittently, lightning strikes one of the cells according to
some probability distribution. If there is a tree in the cell, it
is set to burn. At that point, a cascade begins: fires spread
recursively from cells that are burning to neighboring cells
that contain trees, engulfing the entire connected component
in which they begin (in our implementation, fires wrap around
the grid walls, so there are effectively no boundaries). In the
classical forest fire model (SOC) a tree sprouts in every empty
cell with some fixed probabilityp. In contrast, the HOT model
conceives of a global optimizer choosing the configuration of
each cell (i.e., whether a tree will grow or not); what emerges
globally as a consequence is a collection of large connected
components of trees separated by “barriers” of no trees. The
HOT model is deliberately robust to lightning strikes with the
specified distribution; however, it is also extremely fragile
to changes in the lightning distribution, whereas SOC does
not exhibit such fragility. The HOT landscape tends to have
a highly non-uniform distribution of “fire breaks”, or areas
where no trees are planted, whereas the SOC landscape is ho-
mogeneous.

A natural criticism of the HOT paradigm is that, in com-

plex systems, it is difficult to conceive of a single designer
that manages to optimally design such a system. As a partial
response, much work demonstrates that HOT yields qualita-
tively similar results when heuristic optimization or an evo-
lutionary process is used [5, 8]. Still, most complex sys-
tems are not merely difficult to design globally, but are ac-
tually decentralized, with many entities responsible for parts
of the whole system. Each entity is generally not motivated by
global concerns, responding instead to individual incentives.
For example, the Internet is fundamentally a combination of
autonomous entities making their own decisions about net-
work topology, protocols, and composition.

Our central contribution is to model complex systems
as complex patterns of strategic interactions among self-
interested players making independent decisions. We con-
ceive that out ofstrategic interactionsof such self-interested
players emerges a system that is optimizedjointly by all play-
ers, rather thangloballyby a single “engineer”. Thus, we call
our modelnoncooperatively optimized tolerance(NOT). For-
mally, our model is game theoretic, and we seek to character-
ize emergent properties of the system in a Nash equilibrium.

A Game Theoretic Forest Fire ModelSuppose that each
player controls a portion of a complex system and is respon-
sible for engineering his “domain of influence” against per-
ceived threats. The interests of different players may be op-
posed if, say, an action that is desirable for one has a negative
impact on another. Such interdependencies (commonly re-
ferred to asexternalities) form a central aspect of our model.

We implement the game theoretic conception of complex
system engineering in the familiar two-dimensional forestfire
model. In the NOT forest fire model, each player is allotted
a portion of the square grid over which he optimizes his yield
less cost of planting trees. LetGi be the set of grid cells under
playeri’s direct control, letsi be playeri’s strategy expressed
as a vectorsi in which si,g = 1 if i plants a tree in grid cellg
andsi,g = 0 otherwise, and let Pr{g = 1 | s,si,g = 1} be the
probability (with respect to the lightning distribution) that a
tree planted in cellg survives a fire given the joint strategy
(planting) choices of all players. Denote bys the vector of
all players’ choices. Since exactly one player controls each
grid cell, we simplify notation and usesg = si,g wherei is the
player controlling grid cellg. Let Ni = |Gi | be the number
of grid cells underi’s control andρi be the density of trees
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planted byi. Let Yi(s) = ∑g∈Gi
Pr{g = 1 | s}sg be the yield

for player i. Let c denote the cost of planting a tree. The
utility of player i is then

ui(s) = ∑
g∈Gi

(Pr{g= 1 | s}− c)si,g =Yi(s)− cNiρi .

The result of joint decisions by all players is a grid that is
partially filled by trees, with overall densityρ(s) and overall
yield Y(s) given by a sum ranging over the entire gridG, i.e.,
Y(s) = ∑g∈GPr{g= 1 | s}sg. Let N be the number of cells in
the entire grid. We then defineglobal utility (welfare)as

W(s) = ∑
i∈I

ui(s) =Y(s)− cNρ(s).

Note that whenm= 1, W(s) coincides with the lone player’s
utility. A part of our endeavor below is to characterizeW(s∗)
andρ(s∗) whens∗ is a Nash equilibrium, defined as a config-
uration of joint decisions by all players such that no individual
player can gain by choosing an alternative strategy (planting
configuration)s′i keeping the decisions of other players fixed.

We systematically vary several model parameters. The
first is the number of playersm, which we vary fromm=
1 to N, fixing the size of the grid atN = 128× 128.
The former extreme corresponds precisely to the HOT set-
ting, while in the latter the players are entirely myopic in
their decision problems, each concerned with only a sin-
gle cell of the grid. The entire range of player varia-
tion is m ∈ {1,22,42,82,162,322,642,1282}. The second
parameter that we vary is the cost of planting trees:c ∈
{0,0.25,0.5,0.75,0.9}. Finally, we vary the scale of the
lightning distribution, which is always a truncated Gaussian
centered at the top left corner of the grid. We let the vari-
ance (of the Gaussian before truncation) beN/v, and vary
v∈ {0.1,1,10,100}. For example, atv= 0.1 the distribution
of lightning strikes is approximately uniform over the grid,
while atv= 100 the distribution is highly concentrated in the
top left corner. We divide the grid amongm players by parti-
tioning it intom identical square subgrids.

Analysis of the NOT Forest Fire ModelSome intuition is
provided by initially considering a mathematically tractable
one-dimensional forest fire setting. There, while the density
of planting approaches 1 in both the optimal and equilibrium
configurations asN increases, it turns out that the equilib-
rium density is generally higher than optimal [9]. This agrees
with our intuition on the consequence of negative external-
ities of decentralized planting decisions: when a player de-
cides whether to plant a tree, he takes into account only the
concomitant chance of his own tree burning down, and not
the global impact the decision has on the sizes of cascades.

A full analysis of the two-dimensional model in all the rel-
evant parameters is beyond mathematical tractability. Fur-
thermore, the problem of computing exact equilibria, or even
exactoptima for any player, is intractable, as the size of the
space of joint player strategies in our setting is 216384. Nev-
ertheless, it turns out that simple iterative algorithms for ap-
proximating equilibria as well as optimal decisions by indi-
vidual players are extremely effective. Specifically, we use

a variant ofbest response dynamicsfor approximating Nash
equilibria, which iteratively optimizes each player’s strategy,
keeping strategies of other players fixed [10]. (We found that
both asynchronous and partially synchronous versions of best
response dynamics yield similar results [9]; below we report
on the asynchronous implementation.) Within this procedure,
we approximate optimal responses of individual players using
sampled fictitious play[11]. In sampled fictitious play, each
grid cell controlled by playeri becomes a “player” in a co-
operative subgame (where each cell hasi’s utility as its goal),
and random subsets of cells are iteratively chosen to make si-
multaneous optimizing decisions.

Our first question concerns the variation of global utility
W(s∗) with the number of playersm, the costc, and the param-
eterv governing variance of the lightning distribution. First,
note thatW(s∗) will be no better than optimal form> 1, and
it seems intuitive that it is a non-increasing function ofm. Ad-
ditionally, whenc= 0 andm= N, we have a global utility of
0, since the only equilibria involve either all, or all but one,
players planting trees [9]. In the more general cases, the fol-
lowing simulation results are obtained [9]. Whenc = 0, the
initial drop in global utility is quite shallow form< 256, par-
ticularly when the lightning distribution is relatively diffuse
(v< 100). However, once the number of players is relatively
large, global utility drops dramatically, and nearly reaches 0
already whenm= 4096. Forc> 0, the dropoff in global util-
ity with the number of players becomes less dramatic.

Our next task is to consider how the density changes with
our parameters of interest. Based on the observation above,
we expect the density to be 1, or nearly so, whenc = 0 and
m= N. The density should be appreciably below 1 whenm=
1. Furthermore, the density should decrease with increasing
costc. In general, our intuition, based on all previous analysis,
would suggest that density should increase with the number
of players: after all, each player’s decision to plant a treedoes
not account for the negative impact it has on other players.

Working from this intuition, the simulation results [9] are
highly counterintuitive: the overall densityfalls with increas-
ing number of players untilm reaches 1024, and only when
the number of players is very high (4096 andN) is it generally
higher than the optimal density. This dip is especially appar-
ent for a highly concentrated lightning distribution (v= 100).
To understand this phenomenon we refer to Figure 1, show-
ing actual (approximate) equilibrium grid configurations for
varying numbers of players whenc= 0 andv= 100. We can
observe that each player’s myopic self-interest induces him
to constructfire breaksin his territory where none exist in a
globally superior single-player configuration. Thus, for exam-
ple, contrast Figure 1 (a) and (b). In the former, most of the
grid is filled with trees, and much of the action happens in the
upper left corner (the epicenter of the lightning distribution),
which is filled with fire breaks that confine fires to relatively
small fractions of the grid. In the latter, the upper left corner
is now under the control of a single player, and other players
find it beneficial to plant fire breaks of their own, since the
“wasted” land amounts to only a small fraction of their land-
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1. Sample equilibrium grid configurations withc= 0, v= 100, and the number of players varied between 1 andN = 16384. Blank cells
are planted and marked cells are unplanted. Player domains of influence are shaded in a checkerboard pattern. (a) 1 player, equivalent to HOT;
(b) 4 players; (c) 16 players; (d) 64 players; (e) 256 players; (f) 1024 players; (g) 4096 players; (h) 16384 players. To avoid clutter, we omit
the checkerboard pattern withN players, where each grid cell contains a tree. Note that players adopt different strategies in similar conditions
since best response is only approximate and stochastic, andthere are likely many nearly optimal configurations.

mass, and offers some protection against fire spread to the pro-
tected areas from “poorly” protected neighboring territories.
With more players, we see coordination between neighbors
emerge, as they jointly build mutually beneficial fire breaks,
but such cooperation is not global, and becomes increasingly
diffuse with greater number of players. Nevertheless, increas-
ing the number of players results in a greater amount of total
territory devoted to fire breaks by individual players or small
local neighborhoods, and, as a result, an overall loss in plant-
ing density as observed.

Since the density is decreasing for intermediate numbers
of players, a natural hypothesis is that the fire breaks are dis-
tributed suboptimally. We can observe this visually in Fig-
ure 1. Specifically, analysis of the equilibrium grid config-
urations shows that the location of fire breaks becomes less
related to the lightning distribution as the number of play-
ers grows [9]. Interestingly, even for a moderate number of
players (m= 16), the distribution of fire breaks is nearly ho-
mogeneous and almost unrelated to the lightning distribution.
This suggests that global utility would remain relatively robust
to changes in the lightning distribution compared to the HOT
model. To verify this, we show in Figure 2 average global util-
ity of equilibrium configurationafter the lightning distribu-
tion is randomly changed. Whether the cost of planting trees
is high or low, the figure shows significantly reduced fragility
for an intermediate number of players (between 16 and 1024).
Indeed, when cost is high, the system remains less fragile than
HOT even in the limiting case ofm= N. Because global util-

ity remains relatively close to optimal across a wide range
of settings whenm is below 256 [9], our results suggest that
the regime of intermediate numbers of players retains the ro-
bustness of HOT, while developing some features of SOC that
make it less fragile to changes in the environment. Perhaps the
most important reason for this phenomenon is the impact that
negative externalities have on behavior of agents most suscep-
tible to them: players closest to the epicenter of the lightning
distribution tend to overplant, and others respond by building
firebreaks around parts of their territory, partially protecting
themselves from negative effects of neighbors’ decisions.A
direct consequence of these decisions is that the overall con-
figuration remains quite robust to lightning strikes. A surpris-
ing consequence is that the resulting fire breaks form effective
barriers preventing excessive spread of fire if the lightning dis-
tribution changes. When the number of players (m) is very
small, however, player decisions correspond very closely to
the actual lightning distribution, increasing fragility,while a
very largem fragments decisions too much, and player deci-
sions are highly myopic, with resulting configurations often
not robust and highly fragile.

One of the central results of both SOC and HOT models is a
power-law distribution of burnout cascades. Since our model
generalizes HOT, we should certainly expect to find an ap-
proximately power-law distribution in the corresponding spe-
cial case ofm= 1. We now study how the burnout distribution
behaves with respect to the parameters of interest.

Figure 3 shows fire cascade distributions on the usual log-
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FIG. 2. Fragility of NOT configurations forv= 100. Given the (approximate) equilibrium configurations generated for a lightning distribution
centered at the upper left corner of the grid, we changed the lightning distribution by generating the center of the Gaussian uniformly randomly
from all grid locations. We then evaluated expected global utility given the altered lightning distribution. The graphplots averages of repeating
this process 30-80 times, as compared to global utility for the original environment. Left:c= 0. Right:c= 0.9.
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FIG. 3. Distribution of tree burnout cascades, shown on a log-log plot with Pr{X ≥ x} on the vertical axis andx on the horizontal axis, whereX
is the random variable representing cascade size. The plotsfeature (bottom to top)m= 1 (red),m= 16 (green),m= 256 (blue), andm= 4096
(purple), with the left plot corresponding toc= 0 and the right plot corresponding toc= 0.9. Both plots correspond tov= 10.

log plot for v = 10. Whenm= 1 (red points), the results
suggest an approximate power-law distribution across a range
of scales. Additionally, even whenm is greater than 1 but
relatively small (green points), the distribution remainsap-
proximately linear across a range of scales, suggesting that
the power law is likely not unique to the HOT setting. Once
the number of players is large, however, the distribution of
cascades less resembles a power law, and begins to feature
considerable curvature even at the intermediate scales. Inthat
sense, the NOT setting with many players is unlike both HOT
and SOC. The most important aspect of the cascade distri-
butions is that the tails are systematically increasing with the
number of players in all observed settings [9].
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