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We introduce noncooperatively optimized tolerance (NGTgame theoretic generalization of highly opti-
mized tolerance (HOT), which we illustrate in the forest fimework. As the number of players increases,
NOT retains features of HOT, such as robustness and seifydiar landscapes, but also develops features of
self-organized criticality (SOC). The system retains ad&r@ble robustness even as it becomes fractured, due
in part to emergent cooperation between players, and atatime sime exhibits increasing resilience against
changes in the environment, giving rise to intermediatémeg where the system is robust to a particular distri-
bution of adverse events, yet not very fragile to changes.

Introduction Highly optimized tolerance (HOT) and self- plex systems, it is difficult to conceive of a single designer
organized criticality (SOC) have received consideraltierat that manages to optimally design such a system. As a partial
tion as alternative explanations of emergent power-law cagesponse, much work demonstrates that HOT yields qualita-
cade distributions [1, 2]. The SOC model [1, 3, 4] posits thattively similar results when heuristic optimization or aroev
systems can naturally arrive at criticality and power-lag-c lutionary process is used [5, 8]. Still, most complex sys-
cades, independently of initial conditions, by followirigns ~ tems are not merely difficult to design globally, but are ac-
ple rule-based processes. Among the important features efially decentralizedwith many entities responsible for parts
SOC are (a) self-similarity and homogeneity of the lands¢ap of the whole system. Each entity is generally not motivated b
(b) fractal structure of cascades, (c) a small power-lawoexp global concerns, responding instead to individual incesti
nent (i.e., heavier tails), and (d) low density and low yield For example, the Internet is fundamentally a combination of
(e.g., in the context of the forest fire model, described beautonomous entities making their own decisions about net-
low). HOT [2, 5-7], in contrast, models complex systemswork topology, protocols, and composition.
that emerge as a result of optimization in the face of persis- oyr central contribution is to model complex systems
tent threats. While SOC is motivated by largely mechanicahs complex patterns of strategic interactions among self-
processes, the motivation for HOT comes from evolutionarynterested players making independent decisions. We con-
processes and deliberately engineered systems, such as figye that out oftrategic interaction®f such self-interested
electric power grid. The key features of HOT are (a) & highlyp|ayers emerges a system that is optimigsatly by all play-
structured, self-dissimilar landscape, (b) a high poweréx-  ers rather thaglobally by a single “engineer”. Thus, we call
ponent, and (c) high density and high yield [6]. our modelnoncooperatively optimized toleran(OT). For-

HOT and SOC can be cleanly contrasted in the context omally, our model is game theoretic, and we seek to character-
the forest fire model [2, 4], which features a grid, usuallptw ize emergent properties of the system in a Nash equilibrium.

dimensional, with each cell being a potential site for a.tree A Game Theoretic Forest Fire ModelSuppose that each
Intermittently, lightning strikes one of the cells accorglito  player controls a portion of a complex system and is respon-
some probability distribution. If there is a tree in the céll  sible for engineering his “domain of influence” against per-
is set to burn. At that point, a cascade begins: fires spreagkived threats. The interests of different players may be op
recursively from cells that are burning to neighboring ell posed if, say, an action that is desirable for one has a megati
that contain trees, engulfing the entire connected comgonefimpact on another. Such interdependencies (commonly re-
in which they begin (in our implementation, fires wrap aroundferred to aexternalitie$ form a central aspect of our model.
the grid walls, so there are effectively no boundaries).hin t We implement the game theoretic conception of complex
classical forest fire model (SOC) a tree sprouts in everygmptsystem engineering in the familiar two-dimensional fofeet

Ce”WiFh son;e fixle(ktl) plrobe_lbi_lit}a. Irrl1c0nftrastr,1the H(f?T mo%el model. In the NOT forest fire model, each player is allotted
conceives of a global optimizer choosing the configuration o portion of the square grid over which he optimizes his yield

each cell (i.e., whether a tree will grow or not); what emerge oqq ¢ogt of planting trees. L& be the set of grid cells under

globally as a consequence is a collection of large connectegayeri,s direct control, lets be playeii’s strategy expressed
components of trees separated by “barriers” of no trees. ThgS a vectos in whichs g = 1 if i plants a tree in grid cety

HOT model is deliberately robust to lightning strikes wittet ands,y = 0 otherwise, and let Pg= 1| 8,54 = 1} be the

specified dis_tributio_n; h‘?WG"‘?r' .it is_ also extremely fiagi robability (with respect to the lightning distributiorf)at a

o chan_ggs in the Ilghtnmg distribution, whereas SOC doe ee planted in cely survives a fire given the joint strategy

not_exh|b|t such_frag|l|ty. The .HOT Iaqucape tends to haVe(planting) choices of all players. Denote byhe vector of

a highly non-uniform distribution of "fire breaks", or areas g players’ choices. Since exactly one player controlsheac

where no trees are planted, whereas the SOC landscape is fb‘?id cell, we simplify notation and usg = 5 4 wherei is the

mogeneous. player controlling grid cellg. LetN; = |Gi|ybe the number
A natural criticism of the HOT paradigm is that, in com- of grid cells undeii’s control andp; be the density of trees



planted byi. LetYi(s) = Y4 Pr{g=1]s}sy be the yield a variant ofbest response dynamitsr approximating Nash
for playeri. Let c denote the cost of planting a tree. The equilibria, which iteratively optimizes each player’'sa&gy,
utility of playeri is then keeping strategies of other players fixed [10]. (We found tha
N . R _ both asynchronous and partially synchronous versionssif be
Ui(s) = g; (Pg=1[s} —C)sg=¥(s) —cNp. response dynamics yield similar results [9]; below we repor
. . ) ) __on the asynchronous implementation.) Within this procedur
The_ resu_lt of joint demspns by all play(_ers is a grid that IS we approximate optimal responses of individual playemgisi
pgmally f|||gd by trees, with oyerall densify(s) _and ov_erall sampled fictitious playl1]. In sampled fictitious play, each
yield Y(s) given by a sum ranging over the entire g@di.e.,

_grid cell controlled by player becomes a “player” in a co-
Y(S) = 3gecPr{g=1] s}s. LetN be the number of cellsin 0 a4ive subgame (where each cell Fstility as its goal),
the entire grid. We then defirggobal utility (welfare)as

and random subsets of cells are iteratively chosen to make si
W(s) = Z ui(s) =Y(s) —cNp(s). multaneous optimizing decisions.

i Our first question concerns the variation of global utility
Note that wherm = 1, W(s) coincides with the lone player's W(s") with the number of playens, the cost, and the param-
utility. A part of our endeavor below is to characterisés’)  eterv governing variance of the lightning distribution. First,
andp(s*) whens® is a Nash equilibrium, defined as a config- note thatW(s") will be no better than optimal fan > 1, and
uration of joint decisions by all players such that no indial it seems intuitive that it is a non-increasing functiomofAd-
player can gain by choosing an alternative strategy (pignti ditionally, whenc = 0 andm= N, we have a global utility of
configuration)y keeping the decisions of other players fixed 0, since the only equilibria involve either all, or all butegn

We systematically vary several model parameters. Thelayers planting trees [9]. In the more general cases, the fo
first is the number of playemns, which we vary fromm = lowing simulation results are obtained [9]. Whegr= 0, the
1 to N, fixing the size of the grid ailN = 128x 128. initial drop in global utility is quite shallow fom < 256, par-
The former extreme corresponds precisely to the HOT setticularly when the lightning distribution is relatively filise
ting, while in the latter the players are entirely myopic in (v < 100). However, once the number of players is relatively
their decision problems, each concerned with only a sinlarge, global utility drops dramatically, and nearly rees!®
gle cell of the grid. The entire range of player varia- already whemm = 4096. Forc > 0, the dropoff in global util-
tion is m € {1,22,4%,8%,16°,322,64%,128}. The second ity with the number of players becomes less dramatic.
parameter that we vary is the cost of planting treesc Our next task is to consider how the density changes with
{0,0.25,0.5,0.75,0.9}. Finally, we vary the scale of the our parameters of interest. Based on the observation above,
lightning distribution, which is always a truncated Gaassi we expect the density to be 1, or nearly so, wlkea0 and
centered at the top left corner of the grid. We let the vari-m= N. The density should be appreciably below 1 whes
ance (of the Gaussian before truncation)Ngés, and vary 1. Furthermore, the density should decrease with incrgasin
ve {0.1,1,10,100}. For example, at = 0.1 the distribution  costc. In general, our intuition, based on all previous analysis,
of lightning strikes is approximately uniform over the grid would suggest that density should increase with the number
while atv = 100 the distribution is highly concentrated in the of players: after all, each player’s decision to plant a ttees
top left corner. We divide the grid amomgplayers by parti- not account for the negative impact it has on other players.
tioning it intomidentical square subgrids. Working from this intuition, the simulation results [9] are

Analysis of the NOT Forest Fire ModelSome intuition is  highly counterintuitive: the overall densifglls with increas-
provided by initially considering a mathematically trdaa  ing number of players untin reaches 1024, and only when
one-dimensional forest fire setting. There, while the dgnsi the number of players is very high (4096 axylis it generally
of planting approaches 1 in both the optimal and equilibriumhigher than the optimal density. This dip is especially appa
configurations ad\ increases, it turns out that the equilib- ent for a highly concentrated lightning distribution=€ 100).
rium density is generally higher than optimal [9]. This agge To understand this phenomenon we refer to Figure 1, show-
with our intuition on the consequence of negative externaling actual (approximate) equilibrium grid configuratiomns f
ities of decentralized planting decisions: when a player devarying numbers of players when= 0 andv = 100. We can
cides whether to plant a tree, he takes into account only thebserve that each player’s myopic self-interest induces hi
concomitant chance of his own tree burning down, and noto construcfiire breaksin his territory where none exist in a
the global impact the decision has on the sizes of cascades. globally superior single-player configuration. Thus, feam-

A full analysis of the two-dimensional model in all the rel- ple, contrast Figure 1 (a) and (b). In the former, most of the
evant parameters is beyond mathematical tractability.- Furgrid is filled with trees, and much of the action happens in the
thermore, the problem of computing exact equilibria, omeve upper left corner (the epicenter of the lightning distribaj,
exactoptimafor any player, is intractable, as the size of thewhich is filled with fire breaks that confine fires to relatively
space of joint player strategies in our setting 1833 Nev-  small fractions of the grid. In the latter, the upper leftrar
ertheless, it turns out that simple iterative algorithmsdgp-  is now under the control of a single player, and other players
proximating equilibria as well as optimal decisions by indi find it beneficial to plant fire breaks of their own, since the
vidual players are extremely effective. Specifically, we us “wasted” land amounts to only a small fraction of their land-
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FIG. 1. Sample equilibrium grid configurations with= 0, v= 100, and the number of players varied between 1Mre€16384. Blank cells
are planted and marked cells are unplanted. Player domgim#uznce are shaded in a checkerboard pattern. (a) 1 plegeivalent to HOT;
(b) 4 players; (c) 16 players; (d) 64 players; (e) 256 playgysl024 players; (g) 4096 players; (h) 16384 players. Taidelutter, we omit
the checkerboard pattern withplayers, where each grid cell contains a tree. Note thaepsagdopt different strategies in similar conditions
since best response is only approximate and stochasti¢charelare likely many nearly optimal configurations.

mass, and offers some protection against fire spread todhe prity remains relatively close to optimal across a wide range
tected areas from “poorly” protected neighboring terigsr  of settings whemm is below 256 [9], our results suggest that
With more players, we see coordination between neighborthe regime of intermediate numbers of players retains the ro
emerge, as they jointly build mutually beneficial fire breaks bustness of HOT, while developing some features of SOC that
but such cooperation is not global, and becomes incregsingimake it less fragile to changes in the environment. Perlaps t
diffuse with greater number of players. Neverthelessgasf most important reason for this phenomenon is the impact that
ing the number of players results in a greater amount of totahegative externalities have on behavior of agents mosepusc
territory devoted to fire breaks by individual players or #ma tible to them: players closest to the epicenter of the ligign
local neighborhoods, and, as a result, an overall loss impla distribution tend to overplant, and others respond by louild
ing density as observed. firebreaks around parts of their territory, partially pibeg
Since the density is decreasing for intermediate numberthemselves from negative effects of neighbors’ decisighs.
of players, a natural hypothesis is that the fire breaks are di direct consequence of these decisions is that the overall co
tributed suboptimally. We can observe this visually in Fig-figuration remains quite robust to lightning strikes. A sisp
ure 1. Specifically, analysis of the equilibrium grid config- ing consequence is that the resulting fire breaks form efiect
urations shows that the location of fire breaks becomes ledzarriers preventing excessive spread of fire if the ligtgmiis-
related to the lightning distribution as the number of play-tribution changes. When the number of players {s very
ers grows [9]. Interestingly, even for a moderate number osmall, however, player decisions correspond very closely t
players (n= 16), the distribution of fire breaks is nearly ho- the actual lightning distribution, increasing fragilityhile a
mogeneous and almost unrelated to the lightning distobuti  very largem fragments decisions too much, and player deci-
This suggests that global utility would remain relativedipust ~ sions are highly myopic, with resulting configurations ofte
to changes in the lightning distribution compared to the HOThot robust and highly fragile.
model. To verify this, we show in Figure 2 average globatutil  One of the central results of both SOC and HOT modelsis a
ity of equilibrium configuratiorafter the lightning distribu-  power-law distribution of burnout cascades. Since our rhode
tion is randomly changedwWhether the cost of planting trees generalizes HOT, we should certainly expect to find an ap-
is high or low, the figure shows significantly reduced fragili proximately power-law distribution in the correspondimpgs
for an intermediate number of players (between 16 and 1024%ial case ofn= 1. We now study how the burnout distribution
Indeed, when cost is high, the system remains less fragite th behaves with respect to the parameters of interest.
HOT even in the limiting case ah= N. Because global util- Figure 3 shows fire cascade distributions on the usual log-
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FIG. 2. Fragility of NOT configurations for= 100. Given the (approximate) equilibrium configurationaeyated for a lightning distribution
centered at the upper left corner of the grid, we changedghming distribution by generating the center of the Garsaniformly randomly
from all grid locations. We then evaluated expected glokilitygiven the altered lightning distribution. The graplots averages of repeating
this process 30-80 times, as compared to global utilityHerdriginal environment. Lefc = 0. Right:c = 0.9.
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FIG. 3. Distribution of tree burnout cascades, shown on ddgglot with P{X > x} on the vertical axis andon the horizontal axis, wheb¢
is the random variable representing cascade size. Thefphitge (bottom to topn= 1 (red),m= 16 (green)m= 256 (blue), anan= 4096
(purple), with the left plot corresponding to= 0 and the right plot corresponding ¢e= 0.9. Both plots correspond to= 10.

log plot for v=10. Whenm= 1 (red points), the results
suggest an approximate power-law distribution acrossgeran
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