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We present a rigorous mathematical framework for analyzingdynamics of a broad class of Boolean network
models. We use this framework to provide the first formal proof of many of the standard critical transition
results in Boolean network analysis, and offer analogous characterizations for novel classes of random Boolean
networks. We show that some of the assumptions traditionally made in the more common mean-field analysis
of Boolean networks do not hold in general. For example, we offer evidence that imbalance (internal inhomo-
geneity) of transfer functions is a crucial feature that tends to drive quiescent behavior far more strongly than
previously observed.

Introduction. Complex systems can usually be repre-
sented as a network of interdependent functional units.
Boolean networks were proposed by Kauffman as models of
genetic regulatory networks [1, 2] and have received consider-
able attention across several scientific disciplines. Theymodel
a variety of complex phenomena, particularly in theoretical
biology and physics [3–8].

A Boolean networkN with n nodes can be described by
a directed graphG = (V,E) and a set oftransfer functions.
We useV andE to denote the sets of nodes and edges respec-
tively, and denote the indegree of nodei by Ki . Each node
i is assigned aKi -ary Boolean functionfi : {−1,+1}Ki →
{−1,+1}, termedtransfer function. If the state of nodei at
time t is xi(t), its state at timet +1 is described by

xi(t +1) = fi(xi1(t), . . . ,xiKi
(t))).

Boolean networks are studied by positing a distribution of
graph topologies and Boolean functions from which indepen-
dent random draws are made. We denote the distribution of
transfer functions byT . An early observation was that when
the indegree of a network is fixed atK and each transfer func-
tion is chosen uniformly randomly from the set of allK-input
possibilities, the network dynamics undergo a critical transi-
tion at K = 2, such that forK < 2 the network behavior is
quiescent and small perturbations die out, while forK > 2 it
exhibits chaotic features [2]. This result has been generalized
to non-homogeneous distributions of transfer functions, when
the output bit is set to 1 with probabilityp (calledbias) in-
dependently for every possible input string [9]. The resulting
critical boundary is described by the equation 2Kp(1− p)= 1.

All analysis of Boolean networks to date uses mean-field
approximations, an annealed approximation [9], simulation
studies [1, 7], or combinations of these, to understand the dy-
namic behavior. Many previous studies rely solely on short-
run characteristics (e.g., Derrida plots that consider only a
very short, often only a single-step, horizon [4, 5, 7]) and ex-
trapolate to understand long-term dynamics. Hamming dis-
tance between Boolean network states that diverges exponen-
tially over time for small perturbations to initial state sug-
gests sensitivity to initial conditions typically associated with
chaotic dynamical systems, although the connection between
short-run and long-run sensitivity is not a foregone conclu-
sion [10] and remains an open question.

We provide a formal mathematical framework to analyze
the behavior of Booleam networks over a logarithmic (in the

size of the graph) number of discrete time steps, and give
conditions for exponential divergence in Hamming distance
in terms of the indegree distribution and influence of transfer
functions inT .

Assumptions. We assume that the Boolean networkN is
constructed as follows. First, we specify an indegree distribu-
tion D with a maximum possible indegreeKmax, and for each
nodei independently draw its indegreeKi ∼ D . We then con-
structG by choosing each of theKi neighbors of every nodei
uniformly at random from alln nodes. Next, for each nodei
we independently choose aKi -input transfer function accord-
ing to T . We assume that the familyT haseither of the
following properties:

• Full independence: Each entry in the truth table of a
transfer function is i.i.d.,or

• Balanced on average: Transfer functions drawn from
T have, on average, an equal number of+1 and−1
output entries in the truth table. Formally, Prf ,x[ f (x) =
+1] = 1/2, where Prf ,x denotes the probability of an
event whenf is drawn fromT , and inputx for f is
chosen uniformly at random.

Influence. The notion ofinfluenceof variables on Boolean
functions was defined by Kahnet al. [11] and introduced to
the study of Boolean networks by Shmulevich and Kauff-
man [4]. Theinfluenceof input i on a Boolean functionf ,
denoted by Infi( f ), is

Infi( f ) = Prx[ f (x) 6= f (x(i))],

wherex(i) is the same asx in all coordinates excepti. Given
a distributionT of transfer functions, letTd denote the
induced distribution overd-input transfer functions. The
expected total influence underTd, denoted byI(Td), is
E f∼Td [∑i Infi( f )]. When Td is clear from the context we
write this simply asI(d). Suppose that we have an indegree
distribution wherep(d) is the probability that indegree isd.
We show that the quantity that characterizes the dynamic be-
havior of Boolean networks is

I =
Kmax

∑
d=1

p(d)I(d).
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Main Result. We present our main result that character-
izes dynamic behavior of Boolean networks under the as-
sumptions stated above. Definet∗ = logn/(4logKmax). The
following theorem tracks the evolution of Hamming distance
up to timet∗, starting with a small (single-bit) perturbation.
We note that our theorem applies for any distribution of inde-
grees with a maximum bounded byKmax, though increasing
density (Kmax) shortens the effective horizont∗.

Theorem 1 Choose a random Boolean networkN having a
random graph G with n nodes and a distribution of trans-
fer functionsT . EvolveN in parallel from a uniform ran-
dom starting state x and its flip perturbation x(i) (with a uni-
form random i). The expected Hamming distance between
the respective states ofN at time t≤ t∗ lies in the range
I t ±1/n1/4.

The proof of this theorem is provided in the supplement. It
shows that the effects of flip perturbations vanish whenI < 1
while perturbations diverge exponentially whenI > 1. Thus,
criticality of the system is equivalent toI = 1.

Much of the past work assumed (or explicitly stated) that
it suffices to consider the expected influence valueI(K) for
themeanindegreeK. A direct consequence of Theorem 1 is
that I(K) characterizes a critical transitioniff I (d) is affine.
To see this, observe thatI(K) = I iff I (K) = I (∑d dp(d)) =
∑d p(d)I(d). This is true if and only ifI(d) is affine.

Applications. In this section we use Theorem 1 to recover
most of the characterizations of critical indegree thresholds
to date and prove results for new natural classes of transfer
functions. We show that our assumptions are crucial in ob-
taining the observed results. An important step in applying
the theorem is computing the quantityI(d) for a given class
of transfer functionsT . The following proposition (proven in
the online supplement) facilitates this process. LetBd denote
a d-dimensional Boolean hypercube. The edges ofBd con-
nect pairs of elements with Hamming distance 1. A function
f : Bd → B can be represented by labeling elementx ∈ Bd

by f (x). An edge ofBd is called f -bichromaticif one end-
point is labeled+1 and the other−1.

Proposition 2 Consider a distributionTd over d-input func-
tions. Then

I(Td) =
E f∼Td [# f -bichromatic edges]

2d−1 .

Uniform random transfer functions. We begin with the
classical model of random Boolean networks in which each
entry in the truth table of a transfer function is chosen to be
+1 and−1 with equal probability. It has previously been ob-
served that the critical transition occurs at mean indegreeK =
2 [9]. We now demonstrate that it is a simple corollary of our
theorem. First, we need to computeI(d) using Proposition 2.
In this model, the probability that an edge isf -bichromatic
is exactly 1/2. Hence,I(d) = (total number of edges)/2d.
Since the total number of edges (ofBd) is d2d−1, we obtain
I(d) = d/2. Notice thatI(d) is linear in this case, and, conse-
quently, consideringI(K) = K/2 suffices for any distribution

p(d). Applying Theorem 1 then gives us the well-known crit-
ical transition atK = 2.

Transfer functions with a bias p. A simple generalization
of uniform random transfer functions is to introduce a bias,
that is, a probabilityp that an entry in the truth table is+1
(but still filling in the truth table with i.i.d. entries) [2]. In this
case, the probability that an edge isf -bichromatic is 2p(1−p)
and thereforeI(d) = 2dp(1− p). SinceI(d) is linear, we can
characterize the critical transition in this case at 2Kp(1− p)=
1 for any indegree distribution with meanK.

Canalizing functions. Kauffman [2] and others have ob-
served that since uniform random transfer functions are typ-
ically chaotic, they are unlikely to represent a distribution
of transfer functions that accurately models real phenomena,
such as genetic regulatory networks. Biased transfer functions
only partially resolve this, as they still tend to fall easily into
a chaotic regime for a rather broad range ofp [6]. Empirical
studies of genetic networks suggest another class of transfer
functions calledcanalizing. A canalizing function has at least
one input,i, such that there is some value of that input,vi , that
determines the value of the Boolean function. Shmulevich
and Kauffman [4] show heuristically that canalizing functions
haveI(K) = (K +1)/4 and thus exhibit a critical transition at
K = 3. We now show that this is a corollary of our theorem,
using Proposition 2 to obtainI(d).

To computeI(d), fix (without loss of generality) the canal-
izing input index to be 1 and the canalizing input and output
values to+1. Consider the distribution of functions condi-
tional on these properties. By symmetry, the expected num-
ber of bichromatic edges conditional on this is the same as
the overall expectation. Hence, we can focus on choosingf
from this conditional distribution. Split the hypercubeBd into
the(d−1)-dimensional sub-hypercubesB′ andB′′ such that
B′ has all inputs withx1 = +1 andB′′ has all inputs that
havex1 = −1. Edges can be partitioned into three groups
E′,E′′,E∗. The set of edgesE′ (resp.E′′) are those that are
internal toB′ (resp.B′′). The set of edgesE∗ have end-
points in bothB andB′. Note that|E′|= |E′′|= (d−1)2d−2,
and |E∗| = 2d−1. Because the function is canalizing, the
edges inE′ are all f -monochromatic, and all other edges
are f -bichromatic with probability 1/2. Hence, the expected
number of bichromatic edges is((d − 1)2d−2 + 2d−1)/2 =
2d−1(d+1)/4. By Proposition 2, we then haveI(d) = (d+
1)/4. Since this is affine ind, we can conclude thatI(K) =
(K + 1)/4 characterizes the short-run dynamic behavior for
any indegree distribution with meanK.

Threshold functions. A threshold functionf (x) with d
inputs has the form sgn[ f ∗(x)] with

f ∗(x) =
1
d ∑

i≤d

wixi −θ ,

wherexi is the value of inputi, wi ∈ {−1,+1} is its weight,
which has a natural interpretation of an input being inhibit-
ing (wi =−1) or excitatory (wi =+1) in regulatory networks,
and θ is a real number in[−1,+1] representing an inhibit-
ing/excitatory threshold forf . Such 2-input threshold func-
tions have been studied by Greil and Drossel [12] and Sze-
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jka et al. [13] and are classified as biologically meaningful
by Raeymaekers [14]. We now use Theorem 1 to show that
random threshold functions lead to criticality for any indegree
distribution.

ConsiderT in which the value ofwi for each inputi, as
well asθ , are chosen uniformly at random. To computeI(d),
consider a threshold function with thresholdθ and an edge
(x,x(i)). This edge is bichromatic exactly when theθ lies be-
tween f (x) and f (x(i)). Note that| f ∗(x)− f ∗(x(i))| = 2/d,
regardless of the valuesw1, . . . ,wd. Since the range ofθ has
size 2, the probability that this happens is(2/d)/2= 1/d. So
I(d) = (# of edges)/d2d−1 = 1. Since it is independent ofd,
the result follows immediately by Theorem 1.

Majority function. An important specific threshold func-
tion is a majority function, which haswi = 1 for all inputsi
andθ = 0. SupposeT consists exclusively of majority func-
tions. We demonstrate that the quiescence-chaos transition
properties of this class are very different from those of gen-
eral threshold functions. One detail that needs to be specified
for T is what to do when the number of positive and negative
inputs is exactly balanced. To satisfy the condition thatT is
balanced in expectation, we let the output be+1 or−1 with
equal probability in such an instance (for a specific majority
function this choice is determined, but it is randomized forany
majority function generated fromT ). Given thisT , we now
show that

I(d) =
⌈d/2⌉
2d−1

(

d
⌊d/2⌋

)

.

Whend is odd, bichromatic edges are those that connect the
⌊d/2⌋-level to the⌈d/2⌉-level. For d even, these are the
edges connecting thed/2-level to the(d/2−1)-level (or the
(d/2+ 1)-level). In either case, the number of these edges
is ⌈d/2⌉

( d
⌊d/2⌋

)

, giving I(d) as above. Consequently, when
d = 1 or 2, I(d) = 1, while for d ≥ 3, I(d) ≥ 3/2. Thus, if a
Boolean network has a fixed indegreeK, it is critical forK ≤ 2
and chaotic forK > 2.

Strong majority function. We now show an interest-
ing and natural class of functions where the expected aver-
age influence goesdown as the indegreed increases. Con-
sider threshold functions wherewi = 1 for all inputsi and the
threshold is eitherθ or −θ with equal probability for some
fixed θ ∈ [0,1]. For example, whenθ = 1/3, the function re-
turns+1 iff a 2/3 majority of inputs have value+1. For this
class of functions, bichromatic edges are those that connect
the⌊d/2+ρd⌋-level to the⌈d/2+ρd⌉-level, whereρ = θ/2.
Thus, the expected number of bichromatic edges for a fixedd
is

Be = (d−⌊d/2−ρd⌋)

(

d
⌊d/2+ρd⌋

)

,

and, consequently,I(d) = Be/2d−1. In Figure 1 we plotI(K),
whereK is a fixed indegree, for different values ofρ . There
are two rather remarkable observations to be made about this
class of transfer functions: first, the sawtooth behavior of
I(K), and second, that the Boolean network actually becomes
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FIG. 1. Thex-axis isK. They-axis gives the average influence pa-
rameterI(K). We show the cases whereρ = 1/5,1/6,1/7. For larger
ρ we reach quiescent behavior more rapidly with increasingK.

more quiescentwith increasingK. To our knowledge, this is
the first example in which there is no single critical transi-
tion from order to chaos, and increasing connectivity leads
to greater order. We show that ford large enough,I(d)
tends to 0. For convenience, assume thatd is an even inte-
ger andθd is non-integral. By tail bounds on binomial co-
efficients, 2−d ∑r≥⌊d/2+ρd⌋

(d
r

)

< 2−cd for some constantc.
HenceI(d) < 1 for large enoughd, and tends to zero asd
increases. We had previously noted that it is commonly as-
sumed thatI(d) is linear ind. Strong majority transfer func-
tions featureI(d) that is clearly non-linear, and we there-
fore expect this assumption to be consequential. To illus-
trate, consider two network structures: one with a fixedK = 4,
and another where the indegree distribution follows a power
law with meanK = 4. Using θ = 1/3, in the former, we
get I = I(K) = 1.5, while in the latter (withKmax= 100),
I = 0.79. Thus, while a fixedK yields decidedly chaotic dy-
namics, using a power law distribution with the same mean
indegree produces quiescence.

The importance of graph structure. Our results rely fun-
damentally on the fact that the inputs into each node are cho-
sen independently. The fact that the size of the neighbor-
hood at distancet grows exponentially witht is crucial for
our proofs. Furthermore (for the random graphs we sample
from), this neighborhood is a root directed tree, whent < t∗.
When graphs exhibit only polynomial local growth, we do not
expect chaotic dynamic behavior even when other conditions
for it are met. We illustrate this point in Figure 2 (left), which
compares a random network withK = 4 to a grid (a bidirec-
tional square lattice that also hasK = 4). While both initially
appear to be in a chaotic regime, the Hamming distance stops
diverging for a grid, but diverges exponentially in the random
network.

The importance of being balanced.The assumption that
T is balanced is crucial. Balance has previously been noted to
play an important role in determining the order to chaos tran-
sition, but entirely under the assumption that each truth table
entry is i.i.d. [2]. It has been pointed out that much of the
resulting space of parameter values gives rise to chaotic dy-
namics [6]. What we now demonstrate is that this observation
is largely an artifact of independence, and when truth table
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FIG. 2. Boolean network dynamics (Hamming distance over time, starting with single-bit perturbations). Left: comparing random graph with
K = 4 and a grid. Middle: random networks with fixedK = 10 andunbalancedstrong majorities. Right: random networks withK = 5, using
nested canalizing functions, with degree of imbalance increasing withα, and the empirical distribution of 5-input transfer functions based on
yeast regulatory networks [3, 7].

entries are not independently distributed, even a slight devia-
tion from balance (homogeneity) may push Boolean network
dynamics to quiescence. Consider networks in which every
transfer function is a strong majority (withθ = 0 being a sim-
ple majority). We get a balanced distribution of transfer func-
tion by choosing betweenθ and−θ with equal probability.
An imbalanced distributionis obtained by choosing only one
of them. Figure 2 (middle) shows several examples of how the
Hamming distance evolves for different values ofθ , and con-
trasts the balanced and unbalanced settings. The difference
could hardly be more dramatic: even a slight deviation from
simple majority (θ = 0.01) is a difference between chaos and
quiescence; indeed, it is instructive to see the initial increase
in Hamming distance for the imbalanced strong majority with
θ = 0.01, only to be ultimately suppressed. Similarly, we can
compare the balanced and unbalanced versions of strong ma-
jorities with θ = 1/3: the balanced version is clearly chaotic,
while in the network with the unbalanced analogue, initial per-
turbation effects erode within two iterations. A similar picture
emerges when we consider nested canalizing functions, previ-
ously offered as an explanation of robustness in genetic reg-
ulatory networks [3, 7]. Classes of these are generated by a
parameterα that governs the fraction of 1’s in the transfer
function truth table, with larger values ofα leading to greater
imbalance. Figure 2 (right) compares evolution of networks
with nested canalizing functions, as well as with transfer func-
tions following an empirical distribution of transfer functions
based on regulatory networks [7]. We see that the main driver
of quiescence appears to be internal inhomogeneity of transfer
functions, rather than canalizing properties.
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