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Sandia National Laboratories, P.O. Box 969, Livermore, ifoahia 94551-0969, USA

We present a rigorous mathematical framework for analydiyrgamics of a broad class of Boolean network
models. We use this framework to provide the first formal prmfomany of the standard critical transition
results in Boolean network analysis, and offer analogoasagtierizations for novel classes of random Boolean
networks. We show that some of the assumptions traditipmadide in the more common mean-field analysis
of Boolean networks do not hold in general. For example, er @vidence that imbalance (internal inhomo-
geneity) of transfer functions is a crucial feature thatigeto drive quiescent behavior far more strongly than
previously observed.

Introduction. Complex systems can usually be repre-size of the graph) number of discrete time steps, and give
sented as a network of interdependent functional unitsconditions for exponential divergence in Hamming distance
Boolean networks were proposed by Kauffman as models ah terms of the indegree distribution and influence of transf
genetic regulatory networks [1, 2] and have received camsid functions in.7.

able attention across several scientific disciplines. Theglel Assumptions. We assume that the Boolean netwo#k is
a variety of complex phenomena, particularly in theoréticaconstructed as follows. First, we specify an indegreeidistr
biology and physics [3-8]. tion 2 with a maximum possible indegré&gay, and for each

A Boolean network4” with n nodes can be described by nodei independently draw its indegrég ~ 2. We then con-
a directed graplG = (V,E) and a set otransfer functions  structG by choosing each of th& neighbors of every node
We useV andE to denote the sets of nodes and edges respeemiformly at random from alh nodes. Next, for each node
tively, and denote the indegree of nodby Ki. Each node we independently chooseka-input transfer function accord-
i is assigned &;-ary Boolean functionf; : {—1,+1} —  ing to 7. We assume that the family’ haseither of the
{—1,+1}, termedtransfer function If the state of nodé at  following properties:
timet is x;(t), its state at timé+ 1 is described by

_ e _ ¢ Full independence Each entry in the truth table of a
(L) =10 (1) Xig (0)- transfer function is i.i.d.or
Boolean networks are studied by positing a distribution of

graph topologies and Boolean functions from which indepen- ¢ Balanced on average Transfer functions drawn from
dent random draws are made. We denote the distribution of 7 have, on average, an equal numberdf and—1

transfer functions by”. An early observation was that when output entries in the truth table. Formally,Rff (x) =
the indegree of a network is fixedtatand each transfer func- +1] = 1/2, where Py denotes the probability of an
tion is chosen uniformly randomly from the set of KHinput event whenf is drawn from.7. and inputx for f is
possibilities, the network dynamics undergo a criticahsia chosen uniformly at random.

tion atK = 2, such that folK < 2 the network behavior is

quiescent and small perturbations die out, whileKor 2 it Influence. The notion ofinfluenceof variables on Boolean

exhibits chaotic features [2]. This result has been geizel f,nctions was defined by Kahet al. [11] and introduced to
to non-homogeneous distributions of transfer functiot®ew  {he study of Boolean networks by Shmulevich and Kauff-

the output bit is set to 1 with probability (calledbias) in-  man [4].” Theinfluenceof inputi on a Boolean functiorf,
dependently for every possible input string [9]. The résglt  genoted by Inf f), is

critical boundary is described by the equatidtyffl — p) = 1.
All analysis of Boolean networks to date uses mean-field ey 0)
L L ; . Infi(f) = Pi[f f
approximations, an annealed approximation [9], simutatio nfi(f) K(FO) 7 TR,

studies [1, 7], or combinations of these, to understand yhe d wherex() is the same agin all coordinates excepit Given

hamic behavu_)r._ Many previous studies rely solely on short-a distribution .7 of transfer functions, let7y denote the
run characteristics (e.g., Derrida plots that considey @nl

. : induced distribution oved-input transfer functions. The
very short, often only a single-step, horizon [4, 5, 7]) ard e . .
: : ._expected total influence unde?y, denoted byl (%), is
trapolate to understand long-term dynamics. Hamming dIS-E [5;Infi(f)]. When Z; is clear from the context we
tance between Boolean network states that diverges exponeq' 7 2i Mt 1)]- d

) ; ! L write this simply ad (d). Suppose that we have an indegree
tially over time for small perturbations to initial stategsu distribution wherep(d) is the probability that indegree
gests sensitivity to initial conditions typically assdeia with P b Y 9

chaotic dynamical systems, although the connection betwe We show that the quantity that characterizes the dynamic be-

I havior of Boolean networks is
short-run and long-run sensitivity is not a foregone conclu

sion [10] and remains an open question. Kmax
We provide a formal mathematical framework to analyze I = ; p(d)l(d).
the behavior of Booleam networks over a logarithmic (in the =1



Main Result. We present our main result that character-p(d). Applying Theorem 1 then gives us the well-known crit-
izes dynamic behavior of Boolean networks under the asical transition aK = 2.
sumptions stated above. Defitie= logn/(4l0gKmax). The Transfer functions with a bias p. A simple generalization
following theorem tracks the evolution of Hamming distanceof uniform random transfer functions is to introduce a bias,
up to timet*, starting with a small (single-bit) perturbation. that is, a probabilityp that an entry in the truth table is1
We note that our theorem applies for any distribution of inde (but still filling in the truth table with i.i.d. entries) [2]n this
grees with a maximum bounded Byax though increasing case, the probability that an edge ibichromatic is D(1— p)
density Kmay shortens the effective horizan and thereforé(d) = 2dp(1— p). Sincel (d) is linear, we can
characterize the critical transition in this casel&p?l— p) =
1 for any indegree distribution with me#n

Canalizing functions. Kauffman [2] and others have ob-

Theorem 1 Choose a random Boolean network having a
random graph G with n nodes and a distribution of trans-

fer functions7. Evolve./" in parallel from a uniform ran-  qereq that since uniform random transfer functions are typ
dom starting state x and its flip perturbgﬂoﬁkwﬂh aunl-jcally chaotic, they are unlikely to represent a distribati
form random i). The expected Hamrr*nn_g distance betweeg yansfer functions that accurately models real phen@men
th? respelj::{lve states of” at time t<t" lies in the range  g;ch a5 genetic regulatory networks. Biased transferifmet
St E1/nE only partially resolve this, as they still tend to fall egdihto

The proof of this theorem is provided in the supplement. 1t chaotic regime for a rather broad rangepds]. Empirical
shows that the effects of flip perturbations vanish wher 1 studies of genetic networks suggest another class of gansf

while perturbations diverge exponentially wheh> 1. Thus functions calleccanalizing A canalizing function has at least
criticality of the system is equivalent tg — 1. ' oneinputj, such that there is some value of that inptthat

tdetermines the value of the Boolean function. Shmulevich

Much of the past work assumed (or explicitly stated) tha e o -
it suffices to consider the expected influence vdliie) for ~ and Kauffman [4] show heuristically that canalizing fuocts

the meanindegree. A direct consequence of Theorem 1 is Navel (K) = (K +1)/4 and thus exhibit a critical transition at
that1(K) characterizes a critical transitidfi 1 (d) is affine K = 3. We now show that this is a corollary of our theorem,
To see this, observe thetK) = .7 iff | (K) =1 (qdp(d)) =  using Proposition 2 to obtaird). _
54 p(d)I(d). This is true if and only it (d) is affine. ~ To compute (d), fix (without loss of generality) the canal-
Applications. In this section we use Theorem 1 to recover!Zing inputindex to be 1 and the canalizing input and output
most of the characterizations of critical indegree thrégho values to+1. Consider the distribution of functions condi-
to date and prove results for new natural classes of transfdional on these properties. By symmetry, the expected num-
functions. We show that our assumptions are crucial in opP€r of bichromatic edges conditional on this is the same as

taining the observed results. An important step in applyingn€ ©verall expectation. Hence, we can focus on choosing
the theorem is computing the quantitid) for a given class rom this conditional distribution. Split the hypercui into

of transfer functions7. The following proposition (proven in th‘?(d —1)-dimensional sub-hypercuobfg and#” such that
the online supplement) facilitates this process. #dtdenote  # has all inputs withx = +1 and 2" has all inputs that
a d-dimensional Boolean hypercube. The edgesasfcon- havex; = —1. Edges can be partitioned into three groups

nect pairs of elements with Hamming distance 1. A functionf »E":E”- ﬂ)e set of ?/dgeE’ (resp.E") are tr:ose that are
f: %9 5 % can be represented by labeling elememt ¢~ internal to.# (resp.%j ). The set of ed//geE have dej‘zd'
by f(X). An edge of% is called f-bichromaticif one end- ~ POINtS In bo”(‘? and%’. Note tha{E'| = [E"| = (d—1)2°"%,
point is labeledt 1 and the other-1. and |E*| = 29-1. Because the function is canalizing, the
edges inE’ are all f-monochromatic, and all other edges

Proposition 2 Consider a distributionZ; over d-input func- ~ are f-bichromatic with probability 12. Hence, the expected

tions. Then number of bichromatic edges §d — 1)29-2 4 29-1)/2 =
_ _ 29-1(d 4 1) /4. By Proposition 2, we then havgd) = (d +
1(Jy) = Et~.7# f-bichromatic edge}§ 1)/4. Since this is affine im, we can conclude tha{K) =

2d-1 (K +1)/4 characterizes the short-run dynamic behavior for

Uniform random transfer functions. We begin with the any indegree d'Str'_bUt'On with meah ) _
classical model of random Boolean networks in which each Threshold functlons.*A thrgshold functionf (x) with d
entry in the truth table of a transfer function is chosen to bdnPUts has the form sgfi*(x)] with
+1 and—1 with equal probability. It has previously been ob- . 1
served that the critical transition occurs at mean indeljree () = d Z wix — 0,

2 [9]. We now demonstrate that it is a simple corollary of our I=d
theorem. First, we need to compuitel) using Proposition 2. wherex; is the value of input, w; € {—1,+1} is its weight,

In this model, the probability that an edge fisbichromatic ~ which has a natural interpretation of an input being inRibit
is exactly /2. Hence,l(d) = (total number of edgeg2?.  ing (W; = —1) or excitatory ¢ = +1) in regulatory networks,
Since the total number of edges (@) is d29-1, we obtain  and @ is a real number if—1,+1] representing an inhibit-
I(d) = d/2. Notice that (d) is linear in this case, and, conse- ing/excitatory threshold fof. Such 2-input threshold func-
quently, considering)(K) = K /2 suffices for any distribution tions have been studied by Greil and Drossel [12] and Sze-



jka et al. [13] and are classified as biologically meaningful

by Raeymaekers [14]. We now use Theorem 1 to show that

random threshold functions lead to criticality for any igdee
distribution.

Consider.7 in which the value ofw; for each input, as
well as@, are chosen uniformly at random. To compl(g),
consider a threshold function with threshdldand an edge
(x,x1). This edge is bichromatic exactly when tBdies be-
tween f(x) and f(x1). Note that| f*(x) — f*(x())| = 2/d,
regardless of the values, ..., wy. Since the range d has
size 2, the probability that this happeng2gd)/2=1/d. So
I(d) = (# of edge$/d29-1 = 1. Since it is independent af,
the result follows immediately by Theorem 1.

Majority function. An important specific threshold func-
tion is a majority function, which has; = 1 for all inputsi
and6B = 0. Suppose” consists exclusively of majority func-
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FIG. 1. Thex-axis isK. They-axis gives the average influence pa-
rameterl (K). We show the cases whepe=1/5,1/6,1/7. For larger
p we reach quiescent behavior more rapidly with increaiing

tions. We demonstrate that the quiescence-chaos tramsitionore quiescentvith increasing<. To our knowledge, this is

properties of this class are very different from those of-gen
eral threshold functions. One detail that needs to be spdcifi

for .7 is what to do when the number of positive and negativeto greater order.

inputs is exactly balanced. To satisfy the condition thats
balanced in expectation, we let the outputb® or —1 with
equal probability in such an instance (for a specific majorit
function this choice is determined, but it is randomizeckioy
majority function generated frofr"). Given this.7”, we now

show that
(a72,)

Whend is odd, bichromatic edges are those that connect th
|d/2]-level to the[d/2]-level. Ford even, these are the
edges connecting the/2-level to the(d/2 — 1)-level (or the
(d/2+1)-level). In either case, the number of these edge
is [d/21(Ld‘/’2J), giving 1(d) as above. Consequently, when
d=1or2,l(d) =1, while ford > 3, 1(d) > 3/2. Thus, if a
Boolean network has a fixed indegt€git is critical forK < 2
and chaotic foK > 2.

Strong majority function. We now show an interest-
ing and natural class of functions where the expected ave
age influence goedown as the indegred increases. Con-
sider threshold functions wheve = 1 for all inputsi and the
threshold is eitheB or —8 with equal probability for some
fixed 6 € [0,1]. For example, whef = 1/3, the function re-
turns+1 iff a 2/3 majority of inputs have valu¢ 1. For this
class of functions, bichromatic edges are those that canne
the|d/2+ pd|-level to the[d/2+ pd]-level, wherep = 6/2.
Thus, the expected number of bichromatic edges for a filxed

. :

and, consequently(d) = Be/291. In Figure 1 we plot (K),
whereK is a fixed indegree, for different values pf There

d
d/2]

_ [d/2]

T ood-1

I(d)

d

Be= (A 0/2-pd) (4 % g,

the first example in which there is no single critical transi-
tion from order to chaos, and increasing connectivity leads
We show that far large enough) (d)
tends to 0. For convenience, assume th#é an even inte-
ger andfd is non-integral. By tail bounds on binomial co-
efficients, 29~ /24 pd| (%) < 27 for some constant.
Hencel (d) < 1 for large enoughd, and tends to zero a$
increases. We had previously noted that it is commonly as-
sumed that(d) is linear ind. Strong majority transfer func-
tions featurel (d) that is clearly non-linear, and we there-
fore expect this assumption to be consequential. To illus-
trate, consider two network structures: one with a fiked 4,

nd another where the indegree distribution follows a power
aw with meanK = 4. Using 6 = 1/3, in the former, we
get.# = I(K) = 1.5, while in the latter (withKmax = 100),

sﬂ = 0.79. Thus, while a fixe& yields decidedly chaotic dy-

namics, using a power law distribution with the same mean
indegree produces quiescence.

The importance of graph structure. Our results rely fun-
damentally on the fact that the inputs into each node are cho-
sen independently. The fact that the size of the neighbor-
rhood at distancé grows exponentially witht is crucial for
our proofs. Furthermore (for the random graphs we sample
from), this neighborhood is a root directed tree, whent*.
When graphs exhibit only polynomial local growth, we do not
expect chaotic dynamic behavior even when other conditions
for it are met. We illustrate this point in Figure 2 (left), ish
compares a random network wikh= 4 to a grid (a bidirec-
fional square lattice that also higs= 4). While both initially
appear to be in a chaotic regime, the Hamming distance stops
diverging for a grid, but diverges exponentially in the rand
network.

The importance of being balanced.The assumption that
7 is balanced s crucial. Balance has previously been noted to
play an important role in determining the order to chaos-tran
sition, but entirely under the assumption that each trutketa
entry is i.i.d. [2]. It has been pointed out that much of the

are two rather remarkable observations to be made about thigsulting space of parameter values gives rise to chaotic dy
class of transfer functions: first, the sawtooth behavior ofhamics [6]. What we now demonstrate is that this observation
I(K), and second, that the Boolean network actually becomeis largely an artifact of independence, and when truth table
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FIG. 2. Boolean network dynamics (Hamming distance ovee tistarting with single-bit perturbations). Left: comparrandom graph with
K =4 and a grid. Middle: random networks with fix&d= 10 andunbalancedstrong majorities. Right: random networks wikh= 5, using
nested canalizing functions, with degree of imbalancegiasing witha, and the empirical distribution of 5-input transfer fuicts based on
yeast regulatory networks [3, 7].
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