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Vibrational modes identify soft spots in a sheared disordered packing
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We analyze low-frequency vibrational modes in a two-dimensional, zero-temperature, quasistat-
ically sheared model glass to identify a population of structural “soft spots” where particle rear-
rangements are initiated. The population of spots evolves slowly compared to the interval between
particle rearrangements and the soft spots are structurally different from the rest of the system.
Our results suggest that disordered solids flow via localized rearrangements that tend to occur at
soft spots, which are analogous to dislocations in crystalline solids.

Like liquids, solids can flow under applied shear
stresses. Crystalline solids flow via rare rearrangements
controlled by a population of lattice defects, namely dis-
locations [1]. In disordered solids, rearrangements tend
to be localized [2–4] but there is no obvious way to iden-
tify defects that might control them [5]. Can these rare
localized rearrangements occur anywhere, as in a liquid,
or do glasses possess a population of “soft spots,” analo-
gous to dislocations in crystalline solids, which are struc-
turally distinct and susceptible to rearrangement? Al-
though useful continuum models assume the latter [3, 6],
such a population of spots has never been identified from
structural information.

In order to search for a population of soft spots, we
must start with a solidlike description of the glass. We
begin with harmonic theory, in which the linear response
to an applied stress is completely characterized by the
normal modes of vibration. This approximation breaks
down before solids begin to flow, so one would not expect
the linear response to yield much insight into particle re-
arrangements. However, recent evidence suggests that
low-frequency vibrational modes, which are generically
more prevalent in disordered solids than in crystalline
ones [7], can be quasilocalized. Such modes have unusu-
ally low energy barriers to rearrangements [8], and are
correlated with rearrangements [9–13].

In this paper, we use low-frequency modes to identify
a population of soft spots in a model glass. We find that
rearrangements begin at soft spots, the population of soft
spots evolves slowly compared to the time between rear-
rangements, and that there are structural differences be-
tween soft spots and the rest of the system. We therefore
conclude that soft spots are good candidates for elemen-
tary defects that control the flow of disordered solids.

We study a 50:50 binary mixture of soft discs with unit
mass and diameter ratio 1.4 in two dimensions, interact-
ing via a Hertzian potential V = ǫ(1 − r/R)5/2, where r
is the distance between the centers of two particles and
R is the sum of their radii. Results presented here are for
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jammed packings with a packing fraction φ = 0.95, which
is much higher than the jamming transition at φc ≃ 0.84.
We have also identified soft spots at values of φ closer
to the transition [14]. Lengths and frequencies are in
units of the small particle diameter and the interaction
energy ǫ. We employ Lees-Edwards boundary conditions
to shear the system with a strain step of 10−5. After each
strain step we relax the structure to its minimum energy
to shear the system athermally and quasistatically. We
find that none of the measured soft spot statistics depend
on the strain, so the data shown are for all strains.

With increasing applied strain, the shear stress in-
creases with a slope given by the shear modulus, then
drops abruptly when there is a rearrangement. The
strain step size is reduced to 2 × 10−7 before each re-
arrangement. Between rearrangements, the dynamical
matrix M is calculated at small strain intervals to ob-
tain its eigenvalues (corresponding to the square of the
frequency) and eigenvectors (the vibrational modes) [15].

In this limit of zero temperature and strain rate, a
rearrangement occurs when one vibrational mode (the
critical mode) reaches zero frequency. At that critical
strain, γc, the packing becomes unstable and the coor-
dination of particles in the packing changes. The initial
rearrangement can trigger an avalanche of additional par-
ticle motions [16], so that the net displacements of the
particles may be very different from the critical mode and
may involve contributions from a number of modes [13].
However, in solids at finite temperatures and strain rates,
fluctuations can interrupt or extend avalanches. There-
fore, for the remainder of this paper we focus not on the
avalanche but on the reproducible initial particle rear-
rangement, described by the critical mode [16].

As the system is strained, the packing becomes less sta-
ble and the mode frequencies tend to shift downwards.
At a given strain, one might expect the lowest frequency
mode to be the one whose frequency vanishes at the
next rearrangement. Fig. 1 shows this is not generally
true – the mode most similar to the critical mode lies
at the lowest frequency only for a small range of strains
immediately preceding the particle rearrangement [13].
Note that most excitations at low frequencies are weakly-
scattered sound waves with a strong plane-wave char-
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FIG. 1: (color online) The lowest ten normal mode frequencies
as a function of applied strain. There are two critical strains
at which a mode frequency approaches zero and particles rear-
range, at γc ≃ 0.014 and γc ≃ 0.0183. The color of each point
indicates the overlap of that mode with the critical mode at
γc ≃ 0.0183. The lowest energy mode does not resemble the
critical mode until just before the particle rearrangement.

(a) (b) (c)

FIG. 2: (color online) Soft spots in a system calculated at
3.2×10−3 units of strain before a particle rearrangement. (a)
Regions of large displacement in theNm = 30 lowest frequency
modes. Bold circles highlight the Np = 20 particles with the
largest polarization vectors, and different colors correspond
to different modes. (b) Soft spots generated by clustering
the particles highlighted in (a). Inset: enlargement of “best”
spot. Red arrows indicate the displacement of each particle
during the next rearrangement.

acter. These excitations coexist in the same frequency
range as the quasilocalized excitations [8]; as a result,
the normal modes exhibit characteristics of each. We
therefore look at the entire population of low-frequency
modes to extract soft spots.
For a granular packing of N = 2500 particles, we first

identify the Nm lowest frequency modes in the spectrum
of the dynamical matrix and the Np particles in each of
these modes with the largest polarization vectors. The
values of Nm and Np are not chosen arbitrarily. In-
stead, as we will show in detail below, we optimize these
parameters to maximize correlation with particle rear-
rangements, and show that the optimized N∗

m and N∗

p

have clear physical significance: they correspond to the
energy and length scales of soft spots.

Fig. 2(a) illustrates the locations of the particles identi-
fied by the lowest Nm = 30 modes and Np = 20 particles
for a particular configuration. Note that the largest po-
larization vectors are spatially clustered into regions, and
that the same regions appear in several different modes.
Each of the Np particles in each of the Nm modes is
then assigned a value of unity, while the remaining par-
ticles are assigned a value of zero. We separate this bi-
nary map into localized clusters or “soft spots”, grouping
together particles with non-zero contact forces between
them, as shown in Fig. 2(b) [17]. Thus, the population
of soft spots at strain γ is represented by a binary vec-
tor S(γ) = {Si(γ) ∈ {0, 1}}, where Si = 1 if particle
i is in a soft spot and Si = 0 otherwise. In addition,
we construct a binary vector for each soft spot, indexed
by α: sα = {sα,i(γ) ∈ {0, 1}}, with sα,i = 1 if parti-
cle i is in soft spot α and sα,i = 0, otherwise. Thus,
S(γ) =

∑

α sα(γ). Note that to calculate the soft spots
we used only structural information (the particle posi-
tions and interactions). As a result, the soft spots are
structural, not dynamical features.
We now calculate the correlation of each soft spot,

sα(γ) with the next rearrangement at strain γc, R(γc) =
{Ri(γc)}, where Ri = 1 if particle i has one of the nα

largest displacement vectors in the critical mode and
Ri = 0 otherwise. Here, nα is the number of particles
in soft spot α. The correlation is [18]

Csr
α =

sα(γ) ·R(γc)

nα
+
(1− sα(γ)) · (1−R(γc))

(N − nα)
−1, (1)

The quantity Csr
α is unity if sα andR are perfectly cor-

related, and zero if they are uncorrelated. The rearrange-
ment shown by the red arrows in Fig. 2 has Csr

1 = 0.64
with the blue soft spot (the “best” soft spot with the
highest value of Csr , which we label as α = 1).
The correlation Csr

1
depends on the number of modes,

Nm, and number of particles per mode, Np, used to de-
fine the spots. We choose N∗

p and N∗

m to maximize the
correlation Csr

1
(Eq. 1) with the best soft spot, averaged

over all strains. We find N∗

p = 20 particles per mode
with N∗

m = 30 modes, corresponding to roughly 13 soft
spots in a 2500-particle system.
What is the physical significance of the optimized val-

ues N∗

m andN∗

p ? To understand why the N∗

m = 30 lowest
frequency modes are singled out, we examine the distri-
bution of polarization vector magnitudes for each mode.
Each normal mode is composed of N d−dimensional po-
larization vectors that specify the displacement of each
particle in the packing. Fig. 3 shows polarization vector
distributions for (a) the 15 lowest frequency modes and
(b) 50 intermediate frequency modes. The location of
these regimes are indicated on a plot of the density of
states, D(ω) in the inset to Fig. 3(a).
Fig. 3(b) shows that for modes in the middle of the

spectrum, corresponding to extended anomalous modes
of the type described by Wyart, et al. that constitute the
boson peak [7], the distributions appear to be universal
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FIG. 3: (color online) Polarization vector magnitude distri-
butions for normal modes. (a) Solid lines are the 15 lowest
frequency modes, the dashed line corresponds to a random
matrix ensemble. Inset: Points are the L2 distances between
the normal mode and random matrix distributions as a func-
tion of the mode frequency rank. (b) 50 “extended anoma-
lous” modes from the middle of the spectrum. Inset: density
of states D(ω) as a function of frequency showing the fre-
quency ranges of the modes in (a) and (b).

with a form given by a modified Gaussian Orthogonal
random matrix ensemble (solid line in Fig. 3(b)) [14].
While most of the modes in the spectrum are well-
described by this universal curve, there are clear devi-
ations at the low and high frequency ends of the spec-
trum. At the high frequency end, the localized modes
differ from the universal curve but play no role in our
analysis. At the opposite end of the spectrum, Fig. 3(a)
shows that the lowest-frequency modes (O(10) for a 2500-
particle packing) also differ significantly from the univer-
sal curve [8], as shown by the L2 distances between the
distributions. This number is consistent with N⋆

m ≃ 30
and a different analysis by Schober and Oligschleger [19].
Thus, N⋆

m measures the number of low-frequency modes
that differ significantly from the anomalous modes.

To interpret N⋆
p , we estimate the size of an individual

spot by analyzing the number of particles that change
neighbors during “elementary” particle rearrangements.
In our quasi-static simulations, “elementary” particle re-
arrangements are defined as those where the critical mode
is at least 80% correlated with the total displacement
of all the particles after the packing has reached a new
mechanically stable state. The results are not sensitive
to the particular threshold used as long as we exclude
avalanches, in which one rearrangement triggers another,
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FIG. 4: (a) Correlation of individual soft spots with the re-
arrangement field Csr as a function of how much additional
strain is required to initiate a particle rearrangement (γc−γ)
for the “best” spot with greatest overlap (solid circles), and
the second (open squares) and third-ranked (open triangles)
spots. (b) Correlation of soft spot distributions as a func-
tion of the difference in strain between the distributions, δγ
(Eq. 2). The vertical dashed line indicates the average strain
between particle rearrangements, showing that the distribu-
tions are correlated across many rearrangements.

and so on. We find that the average number of particles
that change neighbors during an elementary rearrange-
ment is 10. A number of neighbors of these 10 particles
also shift significantly during a rearrangement. Thus, we
interpret N⋆

p ≃ 20 as a measure of the size of a localized
rearrangement.

The fact that N⋆
m and N⋆

p are physically meaningful
quantities implies that our method of identifying soft
spots is not arbitrary; it is physically justified. The soft
spot population is not too sensitive to Np and Nm near
their optimal values as long as the fraction of particles in
soft spots is approximately φss = 0.1. If Nm and Np are
chosen such that φss differs significantly from 0.1, corre-
lations between spots and rearrangements are substan-
tially lower. This suggests that other approaches based
on good estimates of the energy scale N⋆

m and size scale
N⋆

p could also correctly identify soft spots.

Next we need to show that the identified soft spots
are good candidates for structural defects that control
flow, analogous to dislocations in crystalline solids. The
following properties of dislocations ensure that they con-
trol flow: (1) rearrangements tend to occur at disloca-
tions, (2) dislocations are long-lived compared to the time
between rearrangements, and (3) dislocations are struc-
turally distinct from the rest of the system. We now show
that soft spots also possess these qualities.

(1) Rearrangements occur at soft spots. Each rear-
rangement is much more strongly correlated with one soft
spot (the “best” one) than any of the others (Fig. 4(a)).
Thus, each rearrangement occurs at one and only one soft
spot in the population. Moreover, the correlation with
the best soft spot is high even when the spots are iden-
tified far in advance of the rearrangement. In Fig. 4(a)
the solid symbols show the correlation between the rear-
rangement and the best soft spot as a function of the dif-
ference, γc−γ, between the strain at which the rearrange-
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ment occurs, γc, and the strain at which the soft spot was
identified, γ < γc. The correlation decays slowly with
increasing γc − γ; the best soft spot calculated shortly
after a rearrangement still has a strong correlation with
the next rearrangement.
(2) The population of soft spots is long-lived compared

to the interval between rearrangements. To calculate the
correlation Css between soft spot distributions, we first
normalize the soft spot distribution so that it has zero
mean and unit variance: S = {Si} for all particles i,

where Si = (Si −
∑

i Si)/
√
∑

i S
2

i − (
∑

i Si)2. We then
define

Css(δγ) =
1

γtot

∫ γtot

0

dγ S(γ) · S(γ + δγ), (2)

where γtot is the total strain studied. Fig. 4(b) shows
that Css decays slowly compared to the average strain
between rearrangements, γ̄. The decay strain is approx-
imately the product of γ̄ and the total number of soft
spots (of order 10), consistent with our observations that
each rearrangement destroys a soft spot. This would im-
ply that Css has a nonzero decay strain even in the ther-
modynamic limit where γ̄ → 0.
(3) Soft spots are structurally different from the re-

mainder of the packing. We average structural quan-
tities over soft spots and over randomly chosen sets of
particles containing the same number of particles as in
soft spots, and compare the results. We find that the
difference is significant for several quantities, including
coordination number (6.5± 1.8%), hexagonal bond order
(29± 8%), and excess free volume (18± 7.9%). However,
we could not identify the same population of soft spots by
coarse-graining these geometric quantities over the area
of an average spot. Thus, although soft spots are struc-
turally different, the difference is sufficiently subtle that
one cannot identify them correctly using only these local
geometric quantities.

We also calculated the local shear modulus [20], aver-
aged over the area of a soft spot. As first noted in [20],
if one is sufficiently close to the rearrangement, the spa-
tial distribution of the coarse-grained shear modulus pin-
points when and where the next rearrangement will oc-
cur. However, it does not provide information about
other soft spots that do not rearrange.

The soft spot analysis provides fundamentally different
information. It identifies a collection of spots; the next
rearrangement will occur at one of these spots but unlike
the local shear modulus, the soft spot analysis cannot
single out that particular spot a priori.

So why is it useful to identify a population of soft
spots? The advantage becomes apparent when one con-
siders the effects of fluctuations that arise from tempera-
ture or shear. Due to fluctuations, a rearrangement will
not necessarily occur in the spot with the lowest energy
barrier, but could occur in any one of the spots with some
probability. In that case, a statistical description of the
soft spot population and rearrangements is needed [3].
Our results show that the soft spot population, unlike

the low-frequency vibrational modes from which it is de-
rived or regions of low local shear modulus, is long-lived
compared to the interval between rearrangements. This
implies that the population is robust to the fluctuations
that arise in quasistatically-sheared systems. The same
analysis can be applied to inherent structures of systems
at finite temperatures and strain rates. Recent experi-
ments on thermal colloids show that soft spots are also
robust at nonzero temperatures [21]. Taken together,
these results provide strong evidence that the spots do
indeed constitute the structural defects relevant for flow
in disordered solids.
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