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We extend the Mermin-Wagner theorem to a system of lattice spins which are spin-coupled to
itinerant and interacting charge carriers. We use the Bogoliubov inequality to rigorously prove that
neither (anti-) ferromagnetic nor helical long-range order is possible in one and two dimensions at
any finite temperature. Our proof applies to a wide class of models including any form of electron-
electron and single-electron interactions that are independent of spin. In the presence of Rashba or
Dresselhaus spin-orbit interactions (SOI) magnetic order is not excluded and intimately connected
to equilibrium spin currents. However, in the special case when Rashba and Dresselhaus SOIs are
tuned to be equal, magnetic order is excluded again. This opens up a new possibility to control
magnetism electrically.
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Since the seminal work on phase transitions by Ho-
henberg [1] and Mermin and Wagner [2] it has be-
come common knowledge that spontaneous order in low-
dimensional systems is generically not possible at any
finite temperature. In these studies, the use of the Bo-
goliubov inequality [3] was essential: Hohenberg used it
to rule out superfuidity [1]and Mermin and Wagner to
rule out magnetic order in Heisenberg spin systems [2] in
dimensions d < 3. This approach is very powerful and
was then applied to many different systems [4–10], in-
cluding the Anderson and Kondo lattice models [11, 12].

For systems in the continuum, the weak coupling ap-
proximation is often applied leading to an effective ex-
change coupling between the localized spins which is of
the RKKY-type [13]. RKKY interactions occur in many
physical systems, prominent examples of present interest
are heavy-fermion systems [14], diluted magnetic semi-
conductors [15–18], and nuclear spins in low-dimensional
conducting nanostructures [19–21]. The latter system
plays an important role as noise source for spin qubits
in GaAs or InAs quantum dots [22–24], and much effort
goes into understanding and controling the nuclear spin
bath, with one possibility being to freeze out the nuclear
noise by magnetic order [25, 26].

In contrast to the Heisenberg exchange, however, the
RKKY interaction is long-ranged and thus is not covered
by the original Mermin-Wagner theorem which requires
the spin interactions to decay sufficiently fast with dis-
tance r (faster than 1/r2+d) [2]. Addressing precisely this
issue, Bruno [10] was able to rule out in RKKY systems
magnetic order in one dimension. A similar conclusion,
however, for the two-dimensional counterpart appears
still to be missing. Here we will fill this gap by rigorously
proving the absence of order for a rather general class of
systems which consist of lattice spins embedded in a con-
tinuum of itinerant electrons with which they interact by
an isotropic on-site spin interaction. The allowed electron

HamiltonianHe is very general and may include electron-
electron interactions as well as any single-particle poten-
tial (such as lattice or disorder potential) that does not
depend on spin. For this class of models we prove then
that in the thermodynamic limit ferro- and antiferromag-
netic, as well as helical, long-range order of the lattice
spins is excluded at any finite temperature in dimensions
one and two. We show that this conclusion remains valid
when short-range Heisenberg interaction between lattice
spins is included. Our result also applies to the RKKY
case, since this regime is obtained from the full one by
lowest order perturbation expansion in the on-site spin
interaction [13] including the full He [26].

Moreover, we consider the effect of Rashba [28] and
Dresselhaus [29] spin-orbit interactions (SOI) which ex-
plicitly break the spin symmetry. Our argument be-
comes then inconclusive and magnetic order cannot be
excluded. While this finding is not unexpected it is re-
markable that it is closely linked to the existence of equi-
librium spin currents studied recently in spintronics [30–
32]. Even more remarkably, we find that in the special
case when Rashba (α) and Dresselhaus (β) SOIs become
equal, magnetic order is excluded again. Since α can be
electrically tuned to β [33–35], this opens up a new way
to tune magnetism by electrical gates.

Finally, we note that the absence of spontaneous order
proven here is valid only in the thermodynamic limit;
thus, effective ordering in nanostructures of finite size at
sufficiently low (but finite) temperatures is not in conflict
with our findings.

Model. We consider a lattice {Rj}NI

j=1 filled with NI

spins Îj = (Îxj , Î
y
j , Î

z
j ) located at the sites Rj . The lat-

tice is embedded into a volume Ω containing Ne itiner-
ant electrons which couple to the lattice spins via on-site
spin-spin interactions. The Hamiltonian for the entire
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system reads,

H = He + J

NI∑

j=1

Ŝj · Îj + h

NI∑

j=1

(e−iQ·Rj Îzj + h.c.), (1)

where He = H0 + V + U =
∑Ne

i=1 p̂
2
i /2m +

∑Ne

i<j Vij +∑Ne

i=1 U(r̂i) is the Hamiltonian describing the electron
system. Here, m is the mass and p̂i the momentum op-
erator of the ith electron, Vij = V (r̂i − r̂j) the electron-
electron interaction of electrons at positions r̂i and r̂j ,
and U(r̂i) an arbitrary spin-independent single-electron
potential. Typical examples for U(r̂i) are periodic lat-
tice potentials, disorder potentials, electron-phonon in-
teractions [36], etc. We remark that in contrast to pre-
vious work on lattice models [11, 12], we do not re-
strict the motion of the electrons to the sites of a lat-
tice (tight binding limit) but allow them to move in the
real space continuum. Further, J denotes the coupling
strength of the isotropic spin interaction at lattice site
Rj , HJ = J

∑NI

j=1 Ŝj · Îj , where Ŝj ≡ Ŝ(Rj) is the

electron spin density operator Ŝ(r) =
∑Ne

i=1 ŝiδ(r − r̂i),
with ŝi = (ŝxi , ŝ

y
i , ŝ

z
i ) being the spin-1/2 of the ith elec-

tron. The vector components of each spin, ŝki and Î lj ,
satisfy standard spin commutation relations. Finally,
to probe the order for the lattice spins Îj we break
the symmetry by an external (fictitious) field h point-
ing in, say, z direction, which we let then go to zero
at the end. This leads to an additional Zeeman term
HZ(Q) = h

∑NI

j=1 e
−iQ·Rj Îzj + h.c. To rule out ferro-

magnetic order we will choose Q = 0, whereas to ex-
clude antiferromagnetic order we will choose Q such that
e−iQ·R = +1, if R connects sites from the same sublat-
tice, and e−iQ·R = −1, if R connects sites from different
sublattices.
To prove the absence of spontaneous order for the lat-

tice spins Îj we follow Ref. [2] and make use of the Bo-
goliubov inequality [3], which is an exact relation between
two operators A, C, and a Hamiltonian H ,

1

2
〈{A,A†}〉〈[[C,H ], C†]〉 ≥ kBT |〈[C,A]〉|2. (2)

Here, 〈A〉 = Tre−H/kBTA/Tre−H/kBT denotes the ex-
pectation value in a canonical ensemble, T the tem-
perature, kB the Boltzmann constant, and {A,B} =
AB+BA the anticommutator and [A,B] = AB−BA the
commutator. It is assumed that all expectation values are
well-defined and exist in the thermodynamic limit defined
by Ne, NI ,Ω → ∞ with electron density ne = Ne/Ω and
density of lattice spins nI = NI/Ω finite.
Proof - The strategy of the proof consists of using the

Bogoliubov inequality to derive an upper bound for the
order parameter corresponding to the phase transition we
want to discuss. If this bound turns out to be in contra-
diction with the presence of long-range magnetic order,
then the absence of the corresponding phase transition is

rigorously demonstrated. The success of the procedure
depends crucially on the choice of the operators A and
C in (2). As we shall see, the appropriate choice for our
case is given by

Cq = Ŝ−
−q + Î−−q + Ŝ+

−q + Î+−q , Aq = Î+q+Q + Î+q−Q, (3)

where the Fourier transforms are given by Ŝq =∑Ne

i=1 e
−iq·r̂i ŝi and Îq =

∑NI

j=1 e
−iq·Rj Îj [37], and where

B± ≡ Bx± iBy. Note that Cq and Aq are not hermitian
in general. Since the Bogoliubov inequality (2) is valid
for any wave vector q, it can be generalized to

1

2

∑

q

〈{Aq, A
†
q}〉 ≥ kBT

∑

q

|〈[Cq, Aq]〉|2

〈[[Cq, H ], C†
q]〉

, (4)

where the sum runs over all q’s in the first Brillouin
zone of the reciprocal lattice. We note that the above
choice for Cq and Aq is essential also for the following
reason. Besides the fact that

∑
q〈[Cq, Aq]〉 can be ex-

pressed in terms of the lattice spin magnetization, the
generally complicated interaction terms V and U in He

simply drop out of the calculation since they commute
with Cq,

[Cq, He] = [Ŝ−
−q + Ŝ+

−q, H0]. (5)

This simplification is a crucial advantage of first over sec-
ond quantization formalism since spin and position oper-
ators of the electrons trivially commute. [Note, however,
that the expectation values still contain the full Hamilto-
nian including U and V .] Hence, our proof goes through
for any form of the potentials V and U as long as they
are spin independent.
We now focus on the various terms in Eq. (4) and

find bounds for them. Here, we outline only the main
steps of the calculations and defer details to the Ap-
pendix [38]. As a first step, let us evaluate the dou-
ble commutator on the right-hand-side of inequality
(4). By virtue of the commutation relation [Ŝ±

−q, H0] =

− q

2m

∑
i ŝ

±
i {p̂i, e

iq·r̂i}, we obtain that [[Cq, He], C
†
q] =

1
mNeq

2. The part of the double commutator with HJ

vanishes since [Cq, HJ ] = 0. Indeed, [Ŝ±
−q, HJ ] =

i
∑

i,j e
iq·r̂iδ(r̂i − Rj)(Îj × ŝi)

±, and thus [Ŝ±
−q, HJ ] =

−[Î±−q, HJ ]. After some calculations (see [38]) we find

that [[Cq, Hz(Q)], C†
q] = −4h(

∑
j e

−iQ·Rj Îzj + h.c.).
Hence,

〈[[Cq, H ], C†
q]〉 = Ne

(
1

m
q2 − 4h

NI

Ne
mz

I(Q)

)
, (6)

where the lattice spin magnetization appearing in Eq. (6),
which we identify as the order parameter, is defined by
mz

I(Q) = 1
NI

〈
∑

j e
−iQ·Rj Îzj + eiQ·Rj Îzj 〉. The commuta-

tor on the right-hand side of inequality (4) can also be
expressed in terms of mz

I(Q),

〈[Cq, Aq]〉 = −2NIm
z
I(Q). (7)
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Finally, the sum on the left-hand side of Eq. (4) can be
bounded as follows,
∑

q

〈{Aq, A
†
q}〉 = 2NI

∑

j

〈{Î+j , Î−j }(1 + cos(Q ·Rj))〉

≤ 4N2
I (2I)

2, (8)

where we have used that
∑

q e
iq·(Ri−Rj) = NIδRi,Rj

,

and 〈{Î+j , Î−j }〉 ≤ (2I)2. Using Eqs. (6), (7), and (8), we
obtain from the Bogoliubov inequality (4)

4N2
I (2I)

2/2 ≥ kBT
∑

q

4N2
Im

z
I(Q)2

〈[[Cq, H ], C†
q]〉

. (9)

Our goal is to rule out spontaneous magnetization in the
lattice spin system, therefore we are interested in the
behavior of the order parameter mz

I(Q) in the limit of
vanishing external field, i.e., h → 0, after we have taken
the thermodynamic limit. We need to distinguish two
cases: i) mz

I(Q) = 0, ∀h around h = 0; ii) mz
I(Q) 6= 0,

∀h around h = 0. If i) is satisfied, there is no order
and the proof is completed. If ii) is satisfied, we need to
show that limh→0 m

z
I(Q) = 0 follows from inequality (9)

in the thermodynamic limit. In this limit, the sum can
be replaced by an integral,

(2I)2 ≥ kBTNIv

Ne(2π)d

∫

|q|≤|qc|

ddq
mz

I(Q)2

q2

2m + |νhmz
I(Q)|

, (10)

where ν = 2NI/Ne, qc is an arbitrary cut-off vector lying
in the first Brillouin zone, v = Ω/NI , and we have used
that 〈[[Cq, H ], C†

q]〉 ≤ Ne(q
2/m + |2νhmz

I(Q)|). In the
one-dimensional case (d = 1), Eq. (10) gives

λ1

√
|h|

T

[
arctan

(
|qc|√

2m|νhmz
I(Q)|

)]−1

≥ mz
I(Q)2√
|mz

I(Q)|
,

(11)
where λ1 = π(2I)2ne

√
ν/(kB

√
2m) . In the limit h → 0,

the left hand-side of inequality (11) vanishes and this
implies that limh→0 m

z
I(Q) = 0. The two-dimensional

case can be treated in a similar way. For d = 2, inequality
(10) leads to the following relation

λ2

T

[
log

(
1 +

|qc|2
2m|νhmz

I(Q)|

)]−1

≥ mz
I(Q)2, (12)

where λ2 = 2
√
2λ1/

√
νm. It follows from inequality (12)

that limh→0 m
z
I(Q) = 0 here, too. Since our arguments

were independent of the choice of Q, we have proven
that neither ferromagnetic nor antiferromagnetic long-
range order of the lattice spins is possible at any finite
temperature T > 0 in one and two dimensions.
The absence of order can be traced back to the in-

creased fluctuations in the lattice spin system in lower
dimensions. These fluctuations, in turn, have their origin
in the kinetic energy of the electrons, as one can explicitly

see from Eq. (10) where the term q2/2m is responsible
for the divergency in above q-integrals for d = 1 and 2.
Next, we show that helical long-range order of the

lattice spins is also excluded. The strategy of the
proof remains the same and we shall be brief (for de-
tails see [38]). To study this type of order, we con-

sider the symmetry breaking Zeeman term H̃Z(Q) =√
2/3h

∑
j e

−iQ·Rj Î+j + h.c. and the magnetic order pa-

rameter m⊥
I (Q) =

√
2/3 1

NI
〈∑j e

−iQ·Rj Î+j + h.c.〉 which
corresponds to a spin helix in the xy-plane. Note that the
spin part of Hamiltonian (1) is isotropic and consequently

all choices for the helix are equivalent. The operators C̃q

and Ãq for the Bogoliubov inequality (4) are now chosen
to be

C̃q = Ŝz
−q+Îz−q and Ãq =

1√
3

(
Î+q+Q − Î−q−Q

)
. (13)

The double commutator on the right-hand
side of Eq. (4) becomes then 〈[[C̃q, H ], C̃†

q]〉 =

Ne

(
q2/4m− νhmI(Q)/2

)
. Since 〈[C̃q, Ãq]〉 =

(NI/
√
2)m⊥

I (Q) and
∑

q〈{Ãq, Ã
†
q}〉 ≤ 2N2

I (2I)
2,

Eq. (4) takes in the thermodynamic limit exactly the
same form as Eq. (10), where mz

I(Q) must be replaced
by m⊥

I (Q). We thus conclude that limh→0 m
⊥
I (Q) = 0

for any Q and hence long-range helical order is also
excluded in one and two dimensions at any T > 0 [27].
As a further generalization, short-range impurity-spin

Heisenberg interaction HI =
∑

i,j Iij Îi · Îj is added
to Hamiltonian (1). When the couplings Iij satisfy
1/NI

∑
ij |Iij |(Ri − Rj)

2 < ∞, then both proofs to
exclude (anti-) ferromagnetic and helical ordering re-
main valid and lead to Eq. (10) with renormalized mass
m∗ = m/(1 + 8mI2 nI

ne

1
NI

∑
ij |Iij |(Ri −Rj)

2) [38].
Presence of spin orbit interaction. Next we investi-

gate the question of magnetic order in a low-dimensional
electron gas in the presence of Rashba [28] and/or Dres-
selhaus [29] spin orbit interaction which break the ro-
tational spin symmetry of the Hamiltonian (1) explic-
itly. The spin-orbit Hamiltonian is given by HSO =
HR + HD, with HR = α

∑Ne

i=1(p̂
y
i ŝ

x
i − p̂xi ŝ

y
i ), HD =

β
∑Ne

i=1(p̂
x
i ŝ

x
i − p̂yi ŝ

y
i ), where α (β) is the Rashba (Dres-

selhaus) coefficient. Using Eq. (3) for Cq, we ob-

tain [[Cq, HSO], C
†
q] = 4mαĵyq=0,x + 4mβĵyq=0,y, where

we have defined the spin-current density operator as
ĵα(r) = 1

2m

∑Ne

i=1 ŝ
α
i {p̂i, δ(r̂i − r)} and its corresponding

Fourier component ĵαq = 1
2m

∑
i ŝ

α
i {p̂i, e

−iq·r̂i}. These
spin currents may lead to an intrinsic cut-off for the fluc-
tuations in q, and thus help to establish order. To see
this, we evaluate now the spin currents perturbatively
around the free electron limit, i.e. U, V, J = 0, and at
T = 0 [39],

〈jyq=0,x〉0 = Ω
mEF

4π
α (14)

〈jyq=0,y〉0 = −Ω
mEF

4π
β , (15)
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where EF is the Fermi energy and the results are valid
in the regime mα2,mβ2 ≪ ~

2EF [40]. Performing now
a perturbative expansion in the parameters V, U, J, T
around above free case, we conclude that 〈ĵyy 〉 6= 0 and

〈ĵyx〉 6= 0 [41]. (In passing we note that in the station-
ary and homogeneous limit, the spin-currents satisfy the
relations 〈ĵxx〉 = −〈ĵyy 〉 and 〈ĵyx〉 = −〈ĵxy 〉 due to a gener-
alized continuity equation, see [38].) As a consequence,
the commutator 〈[[Cq, HSO], C

†
q]〉 appearing in Eq. (9)

does not vanish anymore and thus provides an intrinsic
cut-off to the q-integral (cf. Eq. (10)). Hence, the bound
for the order parameter we extract from inequality (10)
is a constant which does not vanish in the limit h → 0.
Thus, our argument becomes inconclusive and we cannot
rule out (anti-) ferromagnetic order in this case.
Similarly, for helical order our argument remains in-

conclusive, since [[C̃q, HSO], C̃
†
q] = mα(ĵyq=0,x− ĵxq=0,y)+

mβ(ĵyq=0,y − ĵxq=0,x), which, will not vanish in general.
Next, let us consider the special case α = β where

new symmetries emerge [42]. Then, the leading terms,
Eqs. (14), (15), cancel, indicating that the physics
changes dramatically. Indeed, by making use of the

‘gauge transformation’ U = ei
∑

k Âk·r̂k , where Âk =
−αm(ŝxk−ŝyk)(1, 1, 0), to remove the SOI from the Hamil-
tonian, we can prove as before [38] that (anti-) fer-
romagnetic order in z-direction can now be excluded
rigorously for any T > 0 and d = 1, 2. Similarly,
we can rule out helical ordering described by the or-

der parameter m⊥′

I = 1
NI

〈∑j e
−iQ·Rj Î+

′

j + h.c.〉 with

Q =
√
2αm(1, 1, 0) (for rotated coordinates (x, y, z) →

(x′, y′, z′) = (z, (x+ y)/
√
2, (x− y)/

√
2), see [38]).

Thus, quite remarkably, this spin orbit effect suggests
the control of magnetism by electrical gates, namely by
tuning the Rashba SOI (α) [33–35] from the regime α 6= β
(ordering not excluded) to α = β (ordering excluded).
Conclusions. We proved an extension of the Mermin-

Wagner theorem for lattice spins interacting with itiner-
ant electrons, and showed that spontaneous order of the
lattice spins is ruled out in one and two dimensions at
finite temperature. In the presence of Rashba (α) and
Dresselhaus (β) spin-orbit interactions, however, sponta-
neous order could not be excluded, unless for α = β.
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