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For certain systems, the N-particle ground-state wavefunctions of the bulk happen to be exactly
equal to the N-point space-time correlation functions at the edge, in the infrared limit. We show
why this had to be so for a class of topological superconductors, beginning with the p+ip state in
D=2+1. Varying the chemical potential as a function of Euclidean time between weak and strong
pairing states is shown to extract the wavefunction. Then a Euclidean rotation that exchanges time
and space and approximate Lorentz invariance lead to the edge connection. This framework readily
generalizes to other dimensions. We illustrate it with a D=3+1 example, superfluid 3He- B, and a
p-wave superfluid in D=1+1. Our method works only when particle number is not conserved, as in
superconductors.

PACS numbers:

The boundaries or edges of condensed matter sys-
tems received scant attention until recent developments
showed them to be fertile areas of research both in the
Fractional Quantum Hall Effect (FQHE)1,2. and in topo-
logical insulators and superconductors3–9.

In two spatial dimensions, the edge dynamics is de-
scribed by conformal field theory2 which was also used
to produce wave functions in the bulk10,11. Moore and
Read10 showed that one may view the FQHE wavefunc-
tions and the quasi-hole excitations as conformal blocks
in which both electrons and the quasiparticle coordinates
are treated on the same footing and their charges and
braiding properties are severely constrained. For an ex-
haustive review of many related topics see Nayak et al12.

We discuss problems where the N-particle ground-
state wavefunctions of the bulk happen to be exactly
equal to the N-point space-time correlation functions at
the edge, in the infrared limit. What are the minimal
ingredients necessary to establish this equality? Are an-
alytic functions or d=2 conformal invariance required?
We show that our edge-bulk equality follows for a class
of topological superconductors in various dimensions in-
voking only approximate Lorentz symmetry. The connec-
tions obtained here using an effective low energy hamil-
tonian differ from CS theory13 in which the hamiltonian
vanishes and only non-dynamical particles enter via Wil-
son loops, as reviewed in Ref.12.

To relate wavefunctions, which are defined at equal
time, to spacetime edge correlations, it is convenient to
use the Euclidean path integral formalism, which does
not single out time. A key result is a path integral rep-
resentation of Z(J), the generating function of N -body
bulk wavefunctions. This is accomplished by introduc-
ing a time dependent chemical potential that changes
abruptly at some Euclidean time. This procedure only
works for particle non-conserving problems, hence the
restriction to superconductors. We then drop some high
derivative terms which do not matter in the infrared, and
express Z(J) as a Grassmann integral over a Lorentz in-
variant action. Rotating by 90 degrees to exchange time
and a spatial direction we obtain the same topological

superconductor but with a spatial edge induced by the
jump in chemical potential. We find that the same Z(J)
has now morphed into the generating function for the
edge correlation functions. Three examples are given:
the p + ip superconductor in D = 2 + 1, 3 He B phase
in D = 3 + 1 and a p-wave superconductor (the Ising
model) in D = 1 + 1.

Extracting Wavefunctions: Recall that given a
second-quantized N -body state |Φ〉 with wavefunction
φ(x1, x2, ..xN ) we extract φ using

φ(x1, x2, ..xN ) = 〈∅|Ψ(x1)...Ψ(xN )|Φ〉. (1)

where 〈∅| is the Fock vacuum and Ψ is the canonical elec-
tron destruction operator. For problems with variable
number of particles, let us define the generating function

Z(J) = 〈∅|e
∫
dxJ(x)Ψ(x)|Φ〉 (2)

which yields N -body wavefunctions upon differentiating
N - times with respect to the Grassmann source J(x).

We want to express Z(J) as a path integral when |Φ〉 is
the ground state of a Hamiltonian H without conserved
particle number. Since Euclidean time evolution for long
times projects to the ground state, we can obtain |Φ〉 as

|Φ〉 = U(0−,−∞)|i〉 (3)

where |i〉 is a generic initial state and U(0−,−∞) is the
imaginary time propagator from −∞ to 0−. Then we in-
sert the operator exp

[∫
J(x)Ψ(x)dx

]
at time 0. Finally,

we obtain the Fock vacuum by evolving a generic state
〈f | from time +∞ to 0+ using a hamiltonian H ′ with
a huge negative µ that empties out fermions so that we
may write 〈∅| = 〈f |U(∞, 0+). Thus

Z(J) = 〈f |U(∞, 0+)e
∫
J(x)Ψ(x)dxU(0−,−∞)|i〉 (4)

which has a path integral representation.
Example 1: p+ ip : The mean-field hamiltonian is15,16

H =
∑
k

(c†k, c−k)

(
αk2 − µ ∆ · (k1 − ik2)

∆∗ · (k1 + ik2) −(αk2 − µ)

)(
ck
c†−k

)
(5)
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where 1, 2 are spatial indices and x3 will be time. We
retain the minimum k dependence in the pairing function,
and set the coefficient ∆ = 1 so that the gap function is
∆(k1, k2) = k1 − ik2 Why then do we display the less
relevant αk2 term in the kinetic energy? The answer
is that without it, the physics is insensitive to the sign
of µ. But as Read and Green show, it is what allows
us to associate the topologically trivial and nontrivial
states with µ < 0 and µ > 0, with the latter containing
fermions with momenta αk2 ≤ µ. Once we bear in mind
this connection between the sign of µ and the topology,
we drop it in the subsequent computation of infrared wave
functions.

Now the mean field Hamiltonian in real space

H =

∫
d2x

[
Ψ†(−µ)Ψ +

1

2
(Ψ†(−i∂1 − ∂2)Ψ† + h.c)

]
.

(6)
leads to corresponding Grassmann action for U(0,−∞):

S =

∫ ∞
−∞

d2x

∫ 0

−∞
dx3

[
ψ̄Dψ + ψ̄i∂ψ̄ + ψi∂̄ψ

]
(7)

D = (−∂3 + µ) ∂ =
∂

∂z
∂̄ =

∂

∂z̄
(8)

For the 0+ < x3 < ∞, we choose µ = µ+, a very large
negative number, associated with the Fock vacuum and
obtain, for all x3, the action including the source J :

S(J) =

∫ ∞
−∞
d3x
[
ψ̄Dψ + ψ̄i∂ψ̄ + ψi∂̄ψ + Jψδ(x3)

]
(9)

where D now contains a time-dependent µ(x3) that
jumps at x3 = 0 from µ− > 0 to µ+ → −∞.

The generating function of the BCS wavefunctions is

Z(J) =

∫ [
dψ̄dψ

]
eS(J)∫ [

dψ̄dψ
]
eS(0)

(10)

The story is depicted in the left half of Figure 1: the
fermions travel unsuspectingly along in Euclidean time
x3 and slam like bugs onto the windshield at x3 = 0−

when δ(x3)Jψ kills them.
Since ψ and ψ̄ in Eq. 9 are independent Grassmann

variables, we integrate out ψ̄ to obtain the effective action
for just ψ to which alone J couples:

Seff (ψ, J) =

∫
d3x

(
ψi∂̄ψ + Jψ + ψ

1

4i∂
DTDψ

)
≡ S0(J) + Sind. (11)

For the infrared limit we keep just the Jackiw-Rebbi
zero mode17 of the hermitian operator

DTD(x3) = (∂3 + µ(x3))(−∂3 + µ(x3)), (12)

that obeys Df0 = 0

f0(x3) = f0(0)e
∫ x3
0 µ(x′)dx′

(13)

in the mode expansion of the Grassmann field:

ψ(x1, x2, x3) = f0(x3)ψ(x1, x2). (14)
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FIG. 1: (a) Wavefunction: The original superconductor with
µ = µ− > 0 lies in the x1−x2 plane and evolves in Euclidean
time x3 from −∞ to 0−, projecting out the ground state |Φ〉.
At x3 = 0+ the chemical potential drops abruptly to a large
negative value µ−, leading to the Fock vacuum. (b) Corre-
lation functions: A Lorentz rotation makes x1 the new time
and x3 a the spatial coordinate along which the system has
an edge at x3 = 0. The world-sheet of the edge lies in the
x1 − x2 plane at x3 = 0.

This kills Sind, and upon integrating f2
0 over x3,

Seff (J) =

∫
dx1dx2 ψ(i∂̄ + Jf0(0))ψ (15)

While this is indeed the action of a chiral majorana
fermion living in the 1 − 2 plane we are not done: we
need to show that this fermion and this action also arise
at the edge of the same p + ip system. But so far we
have no edge! It will be introduced shortly, but first a
summary of results on the wavefunction.

Pfaffian Wavefunction: Integrating over ψ in Eq. 15,
and suppressing the constant f2

0 (0)) we find

Z(J) = exp

[∫
d2rJ(r)

[
1

4i∂̄

]
rr′
J(r′)

]
(16)

The two-particle wavefunction φ(r1− r2) can be writ-
ten in terms of many related quantities:

φ =
∂2Z(J)

∂J1∂J2
=

[
1

2i∂̄

]
r1r2

=∆∗−1
r1r2 =

1

z1 − z2
(17)

and the N -particle wavefunction is Pf( 1
zi−zj ). In 18 we

relate Z(J) and the conventional BCS wavefunction:

|BCS〉 = exp

(
1

2

∫
Ψ†(x)g(x− y)Ψ†(y)dxdy

)
|∅〉 (18)

and see that φ = −g(r1 − r2).

The Edge: To relate Z(J) in Eqn. 9 to a problem with
the edge we rewrite S(J) in Lorentz invariant form:
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S(J) =

∫
d3x

[
Ψ̄ (∂/− µ) Ψ + JTΨ

]
where (19)

Ψ =

(
ψ
ψ̄

)
Ψ̄ = ΨT ε; ε = iσ2 ∂/ = γµ∂µ(20)

γ1 = σ2 γ2 = −σ1 γ3 = σ3 (21)

JT = Jδ(x3)(1 0). (22)

Look at the left half of Figure 1. We see our current
description of the superconductor: translationally invari-
ant in the x1 − x2 plane, regarded as the space in which
the p1+ip2 superconductor lives, and with a jump in µ at
”time” x3 = 0. In this description, the functional integral
is saturated by one mode f0(x3), glued to the interface,
exactly like the electron gas at a heterojunction.

ExtractingH(x1, x2) from the Lorentz invariant action
is like taking the row-to row transfer matrix. To derive
the hamiltonian that governs the column-to -column dy-
namics, we rotate the three dimensional spacetime by
−π2 around the x2 axis to obtain the view shown in the
right half of Figure 1. The points carry the same labels
as before but the spinor undergoes a rotation:

Ψ =

(
ψ
ψ̄

)
= ei

π
4 iγ3γ1

(
ψ′

ψ̄′

)
= ei

π
4 σ1Ψ′ (23)

Upon performing this transformation we end up with

S(Ψ′, J) =

∫
d3x

[
Ψ̄′ [σ3∂1− σ1∂2− σ2∂3− µ] Ψ′

+ Jδ(x3)(
ψ′ + iψ̄′√

2
)

]
(24)

which describes exactly the same p + ip superconductor
but in the 2−3 plane (with 1→ 3, 3→ −1) with an edge
at x3 = 0 with the µ > 0 side containing the nontrivial
superconductor.

To see that the field ψ′+iψ̄′
√

2
that J couples to is pre-

cisely the Majorana field that arises at the edge, consider
solving the equation for the zero mode which follows from
Eq. 24 on dropping all x1, x2 dependence:

(σ2∂3 + µ(x3))χ′0 = 0 ⇒ χ′0(x3) =
1√
2

(
1
−i

)
f0(x3).

(25)
the normalizable spinor solution indeed corresponds to
the operator 1√

2
(ψ′ + iψ′†).

We are done, for we have shown that Z(J) is at once
the generators of electronic wavefunction in the bulk and
of correlation functions of the Majorana field at the edge.

For completeness, the edge Majorana field action fol-
lows from saturating the x3 dependence of Ψ′ as follows:

Ψ′(x1, x2, x3) =
1√
2

(
1
−i

)
f0(x3)ψ′(x1, x2) (26)

Plugging this into the action S(Ψ′, J) one finds, upon

integrating the normalized function f
′

0(x3) over x3

S(Ψ′, J)→
∫
dx1dx2

[
ψ′i∂̄ψ′ + Jf0(0)ψ′

]
(27)

exactly as in Eqn.15, for the wavefunction.
Example 2: 3He − B in D=3+1: In a simplified

model of superfluid 3He − B, Cooper pairs have spin
1, whose projection lies perpendicular to the momenta
±k20,21. The winding of this axis around the Fermi
surface in the weak pairing phase leads to its topolog-
ical properties21,22. The mean-field Hamiltonian for this
time-reversal invariant class DIII system is20,21 is:

H =
∑
pσσ′

Ψ†pσ(
k2

2m
− µ)Ψkσ (28)

+ {∆kσσ′ψkσψ−kσ′ + h.c.}
∆kσσ′ = [εk · σ]σσ′

The d = 3 problem is just the d = 2 problem on
steroids: ∆ goes from being a complex number to a
quaternion, and the spinless fermion is replaced by a two-
component spinor. Hence the weak-pairing wavefunction
is

gσiσj (rij) ∼
[rij · σε]σiσj

r3
ij

(29)

and the many-body wavefunction is Pf(g), as in Ref. 8:

Ψ(r1σ1, r2σ2, . . . , r2Nσ2N ) = Pf
{
gσiσj (ri − rj)

}
(30)

The Lorentz invariant action for the wavefunction is

S =

∫
d4x

1

2
Ψ̄ [∂/− µ] Ψ where (31)

γ0 =

(
I 0
0 −I

)
γ =

(
0 iσε
iεσ 0

)
(32)

Ψ̄ = ΨT

(
0 I
−I 0

)
(33)

Now the 0 and 1 directions are exchanged by R =

exp
[
iπ
2
iγ0γ1

2

]
, so that J now couples to ψ′+iσ3ψ

′†
√

2
which

is readily verified, as before, to be the gapless edge mode
of the rotated theory. The action for the edge theory
obtained by saturating with the zero mode is

Sedge =

∫
d3x

1

2
ψ̄∂/ψ ∂/ = σj∂j ψ̄ = ψT (−σ2) (34)

Example 3: We could equally well go down a dimen-
sion, to a spinless p-wave superconductor in d = 1 + 114

where ∆ = kx, which is also related to the quantum Ising
model, via the Jordan-Wigner mapping. The edge the-
ory is 0 + 1 dimensional, corresponding to a Majorana
zero mode, with L = 1

2ψ∂xψ. The pair wavefunction in
the weak pairing phase is g(x) ∼ Sign(x).

One can use the parton construction23,24 to generate
fractionalized analogs of the free fermion phases discussed
here. One such attempt, the fractionalized topological
superconductor, is discussed in 18

Summary: We have explained why the electronic
wavefunctions in the bulk coincided with the massless
Majorana correlation functions at the edge in certain
problems. We first wrote Z(J) = 〈∅|eJΨ|BCS〉 as a path
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integral in which the chemical potential abruptly jumped
at in Euclidean time. Dropping the ‘k2’ terms, but not
the connection they provide between the sign of µ and
topology, we obtained a Lorentz invariant action. Upon
rotation by π/2 the same action described a system that
had an edge and Z(J) had meanwhile morphed into the
generating function for edge correlations.

While our trick of rotating the axes can be tried in any
Euclidean path integral, Lorentz invariance is needed to
ensure that the bulk for which the wavefunction is writ-
ten is the same as the one with the edge after rotation.
For Laughlin states realized by applying a magnetic field
to fermions with a parabolic dispersion, we run into two
kinds of problems: the action is far from Lorentz invari-
ant and we cannot vary µ to drain the sea of particles
since their number is conserved. We are working on de-
riving the appropriate bulk-boundary connection.

The bulk-boundary correspondence presented here is
not limited to D = 2+1 and is based on the approximate
Lorentz invariance of the mean-field action. It is very
different from that of topological Chern-Simons theories
with vanishing hamiltonian and restricted to D = 2 + 1.

Various topological superconductors are known corre-
sponding to different Altland-Zirnbauer classes8 - can our
method be applied to any of them? In order to drain the

Fermi sea in our derivation, the band structure should
itself be trivial, and all the topology must be contained
in the pairing (such as the phase winding around the
Fermi surface in p+ ip). Such a construction is possible
for topological phases in class D in d=1 and d=2 (like
p+ip), in class C in d=2 (like d+id) and class DIII in
d=2,3 (He-3 B phase). However, it appears to be not
possible for class CI in d=3,27 which additionally rely on
non-trivial topology of the weak pairing Fermi surface.

The entanglement spectrum of the bulk seems to de-
termine the edge theory25,26, which we now relate back
to the bulk wavefunction. Since the entanglement of a
gapped phase appears from near the cut, the entire bulk
wavefunction must be coded holographically in every d−1
dimensional sliver probed in the entanglement analysis.

Previously, the connection between edge states and
bulk wavefunctions has played an important role identi-
fying new FQH states10,28. Our work suggests a similar
approach could be fruitful in identifying interacting topo-
logical phases in D=3+1.
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