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The electronic structure of low-density n-type SrTiO3 δ-doped heterostructures is investigated by
angular dependent Shubnikov-de Haas oscillations. In addition to a controllable crossover from a
three- to two-dimensional Fermi surface, clear beating patterns for decreasing dopant layer thick-
nesses are found. These indicate the lifting of the degeneracy of the conduction band due to subband
quantization in the two-dimensional limit. Analysis of the temperature-dependent oscillations shows
that similar effective masses are found for all components, associated with the splitting of the light
electron pocket. The dimensionality crossover in the superconducting state is found to be distinct
from the normal state, resulting in a rich phase diagram as a function of dopant layer thickness.

The burgeoning field of oxide electronics is driven by
the rich variety of their physical properties, suggesting
great potential for future multifunctional devices [1, 2].
A workhorse material in this field, SrTiO3 (STO), is
widely used as a perovskite substrate. However, STO
itself displays a range of intriguing low temperature phe-
nomena. For example, it is a quantum paraelectric, show-
ing very high permittivity [3], enabling effective screen-
ing of impurities. Thus n-doped STO is a high-mobility,
low-density superconducting semiconductor [4–7].

Recently, these aspects have motivated the exploration
of two-dimensional (2D) electron physics in STO, leading
to a variety of heterostructure implementations, notably
the LaAlO3/SrTiO3 (LAO/STO) interface [8], (ferroelec-
tric) field effect transistors [9–11], and δ-doped systems
[12]. In the latter system, 2D superconductivity (SC)
and 2D Shubnikov-de Haas (SdH) quantum oscillations
were simultaneously observed. The LAO/STO interface
also displays a similar fascinating combination of proper-
ties [13–16]. Angle-resolved photoemission spectroscopy
(ARPES) has even shown that 2D electron states can be
induced on cleaved STO surfaces [17, 18].

Bulk STO is a d0-electron system with a three-fold de-
generate conduction band at the Γ point, formed by the
dxy, dyz, and dzx t2g orbitals. The added effects of a
tetragonal distortion at ∼ 105 K and the spin-orbit in-
teraction mix these orbital characteristics, depending on
their energy scale relative to the Fermi energy, as de-
scribed by first-principles studies [19, 20]. Due to these
complexities, many questions remain, particularly in re-
lation to the symmetry, effective mass and electronic
structure of these 2D STO systems. This is in part due
to the complex form and small amplitude of the SdH
oscillations [12, 14, 15, 21], which hinders analysis.

To further our understanding, here we use δ-doping
to realize 2D electron states in STO, avoiding lattice
mismatch and interface or surface scattering. This tech-
nique has been developed using pulsed laser deposition
[12, 22, 23], as used here, as well as molecular beam epi-
taxy [21]. We deposited STO heterostructures, 0.2 at. %

Nb:SrTiO3 (NSTO) with varying thickness dNSTO in the
range 11 nm ≤ dNSTO ≤ 292 nm sandwiched by 100 nm
thick undoped STO cap and buffer layers, on STO (001)
substrates. Details of the growth technique and stud-
ies using 1 at. % NSTO have been reported previously
[22, 23]. We stress several points: we could achieve bulk-
quality NSTO films for this level of doping [4, 5], and a
further enhancement of the mobility up to 4900 cm2/Vs
by δ-doping, resulting in a dramatic increase in the SdH
oscillations compared to the 1 at. % NSTO samples.
Magneto-transport measurements at a temperature of

T = 100 mK revealed clear SdH oscillations as shown
in Fig. 1 (a). The oscillatory components here were ex-
tracted by fitting the positive magnetoresistance back-
ground using a polynomial function. It is notable that
clear beating patterns were observed only for relatively
small dNSTO. Fourier transforms (FT) of the data, shown
Fig. 1 (b), show the appearance of peak splitting in the
spectra as dNSTO decreases: for example, three frequen-
cies are clear for dNSTO = 37 nm. Immediately we can
infer that since the beat patterns only appear in the thin-
ner samples, these multifrequencies are associated with
the lifting of the degenerate bulk bands by 2D subband
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FIG. 1. (color online) (a) Shubnikov-de Haas (SdH) oscilla-
tions with varying dNSTO; T = 100 mK. (b) Fourier transfor-
mation (FT) data of (a). Data sets in (a) and (b) have been
offset vertically and scaled for clarity.
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FIG. 2. (color online) SdH oscillations at T = 100 mK, for
various θ, and the positions of the peaks in the FT spectra,
vs. sinθ, for two samples: (a) and (b), dNSTO = 37 nm, (c)
and (d) dNSTO = 124 nm. Solid symbols in (b) and (d) show
the raw FT frequencies, while open symbols in (b) are scaled
by sinθ. Dotted lines are guides to the eye.

quantization in the substrate normal direction, similar to
calculations for STO-based heterostructures [24].

To confirm the dimensionality of the samples, we mea-
sured the SdH oscillations for various magnetic field ori-
entations, where the angle θ = 90◦ corresponds to the
magnetic field H perpendicular to the dopant plane. We
focus on two representative samples, with dNSTO = 37
nm and 124 nm. Although for dNSTO = 37 nm, the
shape of the SdH oscillations changes in a complicated
manner [Fig. 2 (a)], the peak frequencies extracted from
the FT analyses show a clear trend as a function of sinθ,
as plotted in Fig. 2 (b) (solid symbols). Here we label
each peak as α, β and γ in descending order from the
highest frequency. If we multiply the peak frequencies
by sinθ [open symbols in Fig. 2 (b)], the resultant data
are almost independent of θ. This proportionality to the
perpendicular magnetic field component confirms the 2D
character of the SdH oscillations. The slight decrease
of the peak frequencies can be understood by magnetic
freeze-out effects.

In contrast, for the dNSTO = 124 nm sample, while
the amplitude of the signal decreases as θ decreases
[Fig. 2(c)], the oscillation frequency is essentially un-
changed as confirmed in Fig. 2 (d). This indicates a
bulk-like 3D Fermi surface as expected when quantiza-
tion effects are not important. The appearance of an
additional peak in the FT spectra, denoted as λ in Fig. 2

(d), can be explained by magnetic breakdown around the
Fermi surface, as observed previously [25]. In the analy-
sis that follows, for convenience we refer to the 37 nm and
124 nm samples as the 2D and 3D samples, respectively.
Next we focus on the effective mass m∗, which we can

estimate from the temperature dependence of the SdH
oscillation amplitude. For the 2D sample, the SdH data
measured at various T are shown in Fig. 3 (a). The
temperature evolution of the peak intensities from the
FT spectra is shown in Fig. 3 (b), which we fit using the
Lifshitz-Kosevich (LF) formula,

A(T )/T = A0/ sinhX, (1)

where A0 is a prefactor independent of T , and X =
14.69m∗T/µ0H . As shown in the inset of Fig. 3 (b),
using µ0H = 8.5 ± 5.5 T the estimated effective mass
of each peak is m∗

α = 1.37m∗, m∗

β = 1.36m∗, and m∗

γ =
1.32m∗, respectively. These similar values indicate that
these electrons may be split from same electron pocket,
supporting the 2D subband quantization picture.
Due to the relatively large field range used in this anal-

ysis, and the correspondingly large error in the values
of m∗, we performed a cross-check using the inverse FT
(IFT) of one of the peaks in the FT spectra. After per-
forming an IFT on the data within the window defined
by the red box in Fig. 3 (b), the T dependence of a single
peak at 1/µ0H ∼ 0.093 T−1 was followed, as indicated
in Fig. 3 (c). This analysis provides a more accurate m∗

via the fit to Eq. 1, [inset of Fig. 3 (c)], resulting in m∗

α

= 1.14 ± 0.01, in good agreement with the FT analysis.
Since the SdH data for the 3D sample were dominated by
a single frequency, m∗ in this case could be estimated di-
rectly, giving m∗ = 1.12 ± 0.02. Both of these values are
comparable to other transport studies in STO bulk and
heterostructures, but significantly different from ARPES
experiments on cleaved samples, wherem∗ ∼ 0.6, as sum-
marized in Table I. The reason for this may be associated
with electron-phonon renormalization effects [26].
Based on these results we can draw schematic Fermi

surfaces for the 3D and 2D samples, as shown in Fig. 4.
The two extrema of the Fermi surface in the (001) di-
rection are formed by the inner circular pocket of light
electrons, and the outer ‘star’ pocket of heavy electrons.

TABLE I. The effective mass of light electrons estimated for
various STO samples and heterostructures.

Method Sample m∗ Reference

Bulk NSTO 1.24-1.5 [25, 27]
SdH 1 % δ-doped STO 1.24-1.56 [12, 21]

LAO/STO 1.45-2.1 [14, 15]
0.2 % δ-doped STO 1.12-1.38 This work

ARPES Bulk NSTO 1.2-1.3 [26, 28]
Cleaved STO surface 0.5-0.7 [17, 18]
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FIG. 3. (a) SdH oscillations for dNSTO = 37 nm (2D) at various T in the range 0.6 K ≤ T ≤ 2.0 K. (b) FT of data in (a).
Arrows indicate the different peaks labeled α (red), β (blue), and γ (green), respectively. Inset: amplitude variation of each
peak vs T . Dotted lines are fits to Eq. 1. (c) IFT result for the α peak. Frequency window is indicated by the dotted box in (b).
Inset: amplitude variation with T of the peak indicated by the black arrow in the main graph. Dotted line is the theoretical
fit.

We note that we could not detect SdH oscillations from
the heavy electrons in these samples, although their ex-
istence is inferred from other measurements. Estimates
of the heavy effective mass varies from m∗ = 7 [28] to
10 - 20 [17], thus the resulting low cyclotron frequency,
ωc = eµ0H/m∗, (e is the electronic charge), makes the
detection via SdH oscillations more challenging. We can
conclude that in the 3D sample, the observed electron
pocket is the inner circular one, while for the 2D sample,
it is natural to associate the observed multiple frequen-
cies, all with the same m∗, as the same light electrons,
but split by 2D subband quantization.

The existence of non-oscillating heavy electrons sheds
light on the observed discrepancy between the sheet car-
rier density estimated from Hall measurements, NHall (at
µ0H = 1 T), and the SdH oscillation density, NSdH

via the Onsager relation. Such missing carriers have
been observed previously [12, 14–16, 21]. The ratio of
NHall/NSdH is 3.5 in the 3D sample and 5.3 in the 2D
sample, the slight difference possibly due to elongation of
the electron pocket by the confining potential [17]. No-

kz kz
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ky
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(a) (b)

Confinement

direction

FIG. 4. (color online) Schematic diagram of the STO Fermi
surface for (a) dNSTO = 124 nm (3D) and (b) dNSTO = 37
nm (2D). The extremum of the Fermi surface in the [001]
direction is shown with a thick line for each electron pocket.

tably, the existence of this discrepancy for all dNSTO im-
plies that this multiband character is intrinsic, explained
consistently via band structure considerations, and not
dominated by spatial variations of the electron density or
mobility. Additionally, in contrast to the asymmetric po-
tential wells formed at the STO surface, or the LAO/STO
heterointerface, here our potential is designed to be sym-
metric, and added complexities such as the presence of
Rashba splitting are avoided.

Here we assumed spin degeneracy is not lifted in the
Onsager relationship. However, if we take an effective
electron g-factor of g∗ = 2, we find the unusual case
where the Zeeman splitting, ∆Zeeman = g∗µBµ0H is al-
ways larger than the Landau splitting ∆Landau = ~ωc (µB

is the Bohr magneton, ~ is the Plank constant divided by
2π). In this case, spin degeneracy is always lifted. We
note that the 37 nm data in Fig. 1 (a) shows signs of
peak splitting at the highest magnetic field. If this peak
splitting is associated with Zeeman splitting, this would
contradict the notion that ∆Zeeman > ∆Landau. The more
conventional case (∆Zeeman < ∆Landau) would then im-
ply that g∗ < 2. Alternatively this splitting may be due
to different sub-bands which are not resolved, due to dis-
order broadening, at lower fields. Further angular de-
pendent measurements at higher fields may clarify these
points [29].

These samples are also superconducting, with mean
field critical temperatures (Tc) in the range Tc ≤ 200 mK.
Combining these data with the T = 2 K Hall mobility
µ, the normal state and superconducting phase space of
these 0.2 at. % NSTO samples can be mapped, as shown
in Fig. 5. Studies of the superconducting critical fields (to
be discussed in detail elsewhere) demonstrated a transi-
tion from 3D to 2D superconductivity (2DSC), at dNSTO

∼ 124 nm, consistent with estimates of the Ginzburg-
Landau coherence length, as expected for 2DSC [30]. In
contrast, the dimensional crossover of the normal state
into the 2D limit occurs around dNSTO = 64 nm. Below
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lines show estimates of the 3D-2D dimensional crossover for
the normal and superconducting states.

dNSTO = 11 nm, the samples were insulating. Thus for
a wide window 23 nm ≤ dNSTO ≤ 64 nm 2DSC and 2D
metallic states coexist, in a thickness regime significantly
easier to control than for the 1 at. % NSTO samples stud-
ied previously. This provides an ideal system to investi-
gate quantum phase transitions into a variety of ground
states [31], and novel superconductivity in the 2D clean
limit [32, 33].
The high resolution data presented in here reveal the

electronic structure of NSTO, and suggest the possibility
of further high mobility or mesoscopic effects, such as the
quantum Hall effect (QHE). Of particular interest is the
possibility of correlations from the d electrons leading to
novel physics. It should be noted that the complex band
structure of STO will in principle not disrupt the QHE,
as demonstrated by p-type GaAs [34], which has the same
symmetry as the STO conduction band.
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