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We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts
they impart on the atoms’ internal clock states. Exploiting Fermi statistics, we uncover p-wave
collisions, in both weakly and strongly interacting regimes. With the higher density afforded by
two-dimensional lattice confinement, we demonstrate that strong interactions can lead to a novel
suppression of this collision shift. In addition to reducing the systematic errors of lattice clocks, this
work has application to quantum information and quantum simulation with alkaline-earth atoms.
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Ultracold alkaline-earth atoms trapped in an optical
field are rich physical systems and attractive candidates
for quantum information processing [1–4], quantum sim-
ulation of many-body Hamiltonians [5–9], and quantum
metrology [10–14]. In each case, interrogating many
atoms simultaneously facilitates high measurement pre-
cision, but can also yield high atomic density and the
potential for atom-atom collisions at lattice sites with
multiple atoms. For quantum information and simula-
tion, these interactions can be a key feature; for quantum
metrology, however, they present an undesired complica-
tion. For example, collisions can cause density-dependent
frequency shifts in atomic clocks. In all cases, these in-
teractions need to be well understood and controlled.

To limit interactions in lattice clocks, the use of ul-
tracold, spin-polarized fermions was proposed to exploit
the Fermi suppression of s-wave collisions while freezing
out higher partial-wave contributions. This Fermi sup-
pression arises from quantum statistics, which dictates
that identical fermionic particles can collide only via odd-
partial-waves. However, small collision shifts have been
measured in fermionic 87Sr (I = 9/2) [11, 15, 16] and
171Yb (I = 1/2) [12], potentially compromising the ul-
timate accuracy of the lattice clocks. With 87Sr it was
found that s-wave collisions can occur even for initially
indistinguishable fermions [15, 17–19]. These collisions
are enabled because the light-atom interaction introduces
a degree of inhomogeneity, allowing the fermions to be-
come slightly distinguishable. By contrast, using 171Yb
we highlight here the important role that p-wave colli-
sions can play in fermionic lattice clock systems. Aided
by quantum statistics, we present a complete picture of
the cold collisions in the Yb lattice clock by perform-
ing measurements with state-of-the-art precision together
with a quantitative theoretical model. Moreover, we
demonstrate new techniques for canceling the collision
shift that could be used to vastly reduce the clock uncer-
tainty.

In order to simplify a complex system involving colli-
sions of many lattice-trapped, two-level atoms interacting
with a laser field, we use two-pulse Ramsey spectroscopy
[20] (Fig. 1) to probe the collision shift. Provided the
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FIG. 1. (a) Energy level diagram for Yb. (b) Schematic of
the two lattices. Arrows indicate optical polarizations and
magnetic field directions with respect to gravity. At the left,
the Ramsey pulse sequence is entering: two pulses of duration
t1,2 separated by dark time T (not to scale). An inset shows
a few 2-D lattice sites with 0 to 2 atoms per site; two atoms
in one of the sites occupy axial motional states n1 and n2.
(c) Energy level diagram for two atoms in the rotating frame:
three triplet states and one singlet state, with interactions V
and U, as in Eq. (1).

pulse durations t1,2 are short compared to the dark time
between pulses T , the vast majority of the collisions oc-
cur while the atomic population is not being driven by
the laser field. This simplifies our analysis by removing
the time- and laser-detuning-dependence of the excita-
tion from the collisional dynamics. Additionally, with
two dimensions of tight confinement and fewer atoms per
lattice site, a 2-D lattice allows the use of a 1-D model
for collisions between just two atoms in a regime where
interactions are stronger.

Our model begins by considering this simple case: two
atoms in the same lattice site, populating axial vibra-
tional modes n1 and n2 and the lowest transverse band
[4, 5, 18]. Assuming the vibrational quantum num-
bers are conserved during the collisions and laser in-
terrogation, the Hamiltonian for the two-atom system
can be written in a four-state basis set: |gg〉, |ee〉,
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(|eg〉+ |ge〉) /
√

2 (“triplet states”) and (|eg〉 − |ge〉) /
√

2
(“singlet state”) [16, 17]. Here g and e are associated
with the 1S0 and 3P0 electronic “clock” levels, respec-
tively, which are coupled by the probe laser. Because the
atomic population is prepared in a single nuclear-spin
state (mI = 1/2 or −1/2), quantum statistics dictates
that only the triplet states, which are invariant under
particle exchange, are affected by p-wave interactions,
while the singlet configuration interacts via s-wave only.
The Hamiltonian in the rotating frame can be written in
this basis as

HT =


δ + V gg 0 Ω̄/

√
2 ∆Ω/

√
2

0 −δ + V ee Ω̄/
√
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∆Ω/
√

2 −∆Ω/
√

2 0 Ueg

 . (1)

Here δ is the detuning from the atomic transition, Ω̄ =
(Ωn1

+ Ωn2
)/2 is the average Rabi frequency for the two

atoms, and ∆Ω = (Ωn1
−Ωn2

)/2 is the difference in Rabi
frequency, which is non-zero in the presence of excitation
inhomogeneity. The terms Uαβ and V αβ give, respec-
tively, the s- and p-wave interactions between an α = g, e
and a β = g, e atom occupying motional states n1 and n2
[21]. For short pulses and large Rabi frequencies, we can
ignore collisions during the pulses. During the dark time,
the Hamiltonian describing the atom dynamics is diago-
nal in the singlet-triplet basis, and each state acquires a
phase shift. The different phase acquired by each state
is what gives rise to the clock frequency shift.

The analytical solution for the frequency shift is cum-
bersome [21], but we gain insight by separately consider-
ing s- and p-wave interactions in a limiting case. p-wave
interactions are fully allowed in the triplet manifold pro-
vided there is sufficient collision energy to overcome the
centrifugal barrier (expected to exceed 30 µK based on
calculated van der Waals coefficients [22]). For ∆Ω = 0,
t1 = t2 and weak interactions V α,βT � 1 we obtain the
simple expression (See [21])

∆νp ∼
V ee − V gg + (2V eg − V ee − V gg)(Ng−Ne

2 )

4π
, (2)

with Ng and Ne the ground and excited atom popula-
tions after the first pulse [23]. This expression is analo-
gous to the one obtained for non-condensate bosons [24]
and can be understood as the difference in chemical po-
tential of the two components. In this simple limit the
shift is independent of the dark time. Conversely, s-
wave collision shifts occur only with excitation inhomo-
geneity (∆Ω 6= 0). Again considering weak interactions
(UegT � 1) and small inhomogeneity we find [17, 18]

∆νs ∼
(

sin(∆Ω t1)

sin(Ω̄ t1)

)2
Ueg(Ng −Ne)

4π
. (3)

While the relative sizes of the s- and p-wave shifts de-
pend critically on the atomic scattering properties, which

are generally not known, a simple estimate of the ratio
between the s-wave and p-wave shifts can be made in free
space [15]. Here, Ueg is proportional to the s-wave scat-
tering length (aeg) and independent of temperature (T ),
while V scales as k2T b

3, with b3 the p-wave scattering vol-
ume and kT the wavenumber associated with the thermal
deBroglie wavelength (kT =

√
2πmkBT /~ with m the

atom mass). Even for low temperature T = 1 µK, with
a moderate choice of scattering lengths b ∼ aeg ∼ 100a0
(a0 the Bohr radius) and a typical excitation inhomo-
geneity 〈∆Ω/Ω̄〉T ∼ 0.1, the ratio ∆νp/∆νs ∼ 6 reveals
that neither type of interaction can be ignored [25].

In the 2-D lattice, most sites are occupied by one or
two atoms, and we expect the two-atom model (Eq. 1)
to correctly describe the physics, provided we integrate
the shift over the spatial array of lattice sites. Moreover,
instead of choosing a specific set of vibrational modes
{n1, n2}, we numerically calculate the appropriate ther-
mal average over all possible modes [21]. In the 1-D lat-
tice, each site is populated by many atoms, so the two-
atom model is not directly applicable. However, in the
weakly interacting regime, a mean-field picture that ap-
proximates the many-atom interactions by a sum of pair-
wise interactions provides a fair description. Thus we use
the two-atom Hamiltonian with temperature-dependent,
effective interaction parameters to model the multi-atom
case. We compared this effective model with a numer-
ically calculated N-body model and found qualitative
agreement.

Our experimental procedures are similar to those de-
scribed in [12]. After two stages of laser cooling (see
Fig. 1(a)), atoms are trapped by the horizontal or ver-
tical lattice for 1-D confinement, or by both lattices
for 2-D operation. Approximately 25000 atoms at tem-
perature T ∼ 10 µK are trapped in the 1-D lattice,
which gives an estimated density of ρ1 = 3 × 1011/cm3

and an average of 20 atoms per site. In the 2-D lat-
tice, we estimate that 25 % of the ∼5000 atoms are in
doubly-occupied sites, for which the effective density is
ρ2 = 4 × 1012/cm3, and fewer than 1 % of the atoms
are in sites with more than two atoms. The lattice is
tuned to the “magic wavelength” near 759 nm, where
the two clock states experience identical trapping poten-
tials. We offset the frequencies of the two lattice beams
by 2 MHz using acousto-optic modulators (AOMs), pre-
venting any line-broadening from the vector Stark shift
[12, 26–28]. With the atoms loaded in a lattice, we spin-
polarize the sample by optical pumping to one of the spin
states (mF = ±1/2) with 556 nm light; impurity in the
spin-polarization is ≤1 %. The clock light, pre-stabilized
to a high-finesse optical cavity [29] to be resonant with
the 1S0 → 3P0 clock transition, is switched on during
the Ramsey pulses with an AOM. The collision shift is
found by repeatedly measuring the frequency offset be-
tween high- and low-density clock operations relative to
the ultrastable optical cavity. These interleaved measure-
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FIG. 2. (a) Collision shift vs excitation fraction, 1-D lattice. Blue (red) points show experimental measurements in a vertical
(horizontal) lattice with temperature T ∼ 10 µK and 〈∆Ω/Ω̄〉T = 0.2. Dashed black line gives an s-wave-only fit (〈Ueg〉T =
−2π × 3.0 Hz) from the mean-field model. Solid red line gives a p-wave-only fit with 〈V eg〉T = 10〈V ee〉T = −2π × 2.2 Hz.
Long-dashed green line adds to this a small s-wave component (〈Ueg〉T = −2π × 1.2 Hz). (b) Collision shift vs excitation
fraction, 2-D lattice. Blue (red) points probe along the vertical (horizontal) direction. Dashed black line is an s-wave-only
fit with a−eg ≈ −25 a0 (a0 the Bohr radius); solid red line is a p-wave-only fit with beg ≈ −74 a0 and b3ee = 0.1b3eg. The
long-dashed green line adds to this a small s-wave interaction a−eg = −25 a0. We emphasize that these are not necessarily
accurate determinations of the scattering lengths since their values depend on the spatial distribution of the atoms in the
2-D lattice, which is not well characterized. (c) Collision shift vs probe misalignment angle (vertical 1-D lattice) for constant
excitation fraction 0.12. Using the same parameters as (a), the dashed black line gives an s-wave-only fit, solid red line gives a
p-wave-only fit, and the long-dashed green line has s- and p-wave terms. In the well-aligned case (0 mrad) there is a residual
effective misalignment of ∼ 5 mrad due to the imperfect overlap between lattice and probe beams.

ments have an instability of ≤ 1.5× 10−15/
√
τ , for aver-

aging time τ in seconds, allowing statistical error bars of
∼ 20 mHz in just 2000 s.

We first considered the collision shift as a function of
excitation fraction (i.e., the fraction in 3P0 during the
dark time). The excitation fraction was varied by chang-
ing the Rabi frequency of the Ramsey pulses. The mea-
sured shifts are shown in the blue and red points in
Fig. 2(a) (1-D lattice) and Fig. 2(b) (2-D lattice). For
these data, the pulse duration is t1 = t2 = 1 ms, and
the dark time is T = 80 ms. For the 2-D lattice the
black dashed and solid red curves give the numerically
calculated shift using the s-wave scattering length (a−eg)
and p-wave scattering volumes (b3eg and b3ee) as fitting pa-
rameters. (bgg is taken to be zero, consistent with prior
measurements [30]). For the 1-D lattice, the curves are
calculated from the mean-field approximation with the
effective interaction parameters varied for fitting. Fig. 2
shows that the p-wave interaction provides a much bet-
ter description of the experimental data, as the shift in-
duced by pure s-wave collisions is generally too small and
does not exhibit the correct dependence on the excitation
fraction. The shifts go through zero near an excitation
fraction of 0.51 in the 1-D lattice and 0.4 in the 2-D
lattice. Zero-crossings near 0.5 are readily understood
if V eg dominates (see Eq. 2): by creating equal partial
densities of ground and excited atoms (Ng = Ne), the
energy shift on the two clock levels is the same, and the
net shift is canceled. Operation of the clock at this zero-
crossing could substantially improve the performance of
the Yb system. The deviation from a zero-crossing at
exactly 0.5 in the 1-D case is consistent with a small ee

interaction (V ee ≈ 0.1V eg).

To further rule out s-wave interactions, we misaligned
the probe beam to couple more strongly to the weak
confinement axis of the lattice trap (Fig. 2(c)). Doing
so introduces greater excitation inhomogeneity from the
Ramsey pulse (in this case, up to a factor of 2.4) be-
cause the atoms are not tightly confined along this axis
[15]. We expect the s-wave shift to depend quadratically
on the inhomogeneity, yet the frequency shifts show no
change. This insensitivity is well explained by p-wave
interactions, which depend only weakly on inhomogene-
ity at these levels (decreasing slightly as more population
transfers to the singlet state). A small but non-zero s-
wave interaction could balance this effect and may help
explain the complete lack of dependence, as shown in the
theory curves in Fig. 2(c). The green long-dashed lines
in Fig. 2(a,b) also show that adding a small but non-zero
s-wave interaction is consistent with the observed colli-
sion shifts. Still, all of these considerations indicate that
p-wave interactions play the dominant role in the cold
collisions of 171Yb.

We experimentally investigated several effects not in-
cluded in the model to ascertain their importance. First,
we explored the role of tunneling by measuring the shifts
for both vertically and horizontally oriented 1-D lattices,
exploiting gravity-induced suppression of the tunneling
rate [21, 31], but we observed no change in the data
(Fig. 2(a)). A second effect, laser-induced mode-changing
collisions, can occur for pulses shorter than the mean os-
cillation period in the trap. Nevertheless, we ruled out
the relevance of those processes by varying the pulse du-
ration over a factor of ten without observing any sub-
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FIG. 3. (a) Collision shift vs dark time, 1-D lattice, for excitation fraction 0.18. Using the same parameters as Fig. 2(a), the
solid-line gives a fit from the mean-field model. (b) Collision shift vs dark time, 2-D lattice, for excitation fraction 0.19± .03.
The shift crosses zero due to the periodic dependence of the shift on collisional phase, and is a signature of strong interactions.
The model calculations (shaded region) use the same parameters as Fig. 2(b) for an excitation fraction range 0.19 ± .03. (c)
Asymmetric Rabi spectrum, 2-D lattice. The solid line is the prediction of the model, using the number of doubly occupied
sites as a fitting parameter.

stantial modification to the measured collision shifts [21].
Finally, we note that we looked for dependence of the col-
lision shifts on the second pulse area [17], but found no
significant dependencies.

It is interesting to see how collision effects are manifest
in a regime of high density and strong interactions (e.g.
V α,βT ≥ 1). A key observation revealing the operation of
the 2-D lattice clock in the regime V geT � V eeT ≥ 1 is
the zero-crossing of the collision shift at a lower excitation
fraction of 0.4, which deviates from the crossing near 0.5
found for weak interactions (Fig. 2(a) and Eq. 2). This
change occurs due to the nontrivial counterplay between
V ge and V ee in the strongly interacting regime. The in-
teraction strength also introduces additional dependen-
cies on the dark time. As mentioned previously, the
shift is independent of T for weak interactions, but with
strong interactions it decays with increasing T due to the
shift’s sinusoidal dependence on scattering phase [21, 32].
We investigated this experimentally by varying the dark
time T and measuring collision shifts in the 1-D lattice
(Fig. 3(a)), where the shift scales weakly with T , and the
2-D lattice (Fig. 3(b)), where the shift is strongly damped
towards zero with increasing T . Yet a third signature of
strong interactions is significant asymmetry in the clock
transition spectrum. In Fig. 3(c) we show a Rabi spec-
trum (t = 120 ms), taken under high density operation in
the 2-D lattice, which shows an additional feature on the
red side (δ < 0) of resonance. This asymmetry is density-
dependent and barely observable in the 1-D lattice. In
the 2-D lattice, the interactions are sufficiently strong
(V egt ≥ 1) to introduce these asymmetric lineshape fea-
tures beyond the transition linewidth. With yet higher
density, it may be possible to spectrally resolve three fea-
tures, one each for the s-wave-interacting singlet, the p-
wave-interacting triplets, and the non-interacting atoms
in singly occupied lattice sites. Interaction-induced side-
bands were recently reported in [33] and may be useful

for quantum simulation applications.

In this Letter we have shown evidence for p-wave in-
teractions in ultracold Yb confined in an optical lattice.
Although lower atomic temperature yields reduced tun-
neling through the p-wave barrier, and thus a lower scat-
tering cross-section, it also increases the atomic density
of the confined atoms. Depending on the detailed scat-
tering parameters, both s- and p-wave interactions may
be relevant for all optical lattice clock systems. Using the
dependence of the measured shift on excitation fraction
and dark time, we have observed zero-crossings in the
measured frequency shifts, which provide the metrologi-
cal means to reduce the shifts to nearly negligible levels.
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