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The observation of the bottom, strange baryon ZY through the decay chain Z) — ZF 7=, where

+ ot

Ef s = atat, 27 = An ", and A — pn, is reported using data corresponding to an integrated
luminosity of 4.2 fb~! from pp collisions at /s = 1.96 TeV recorded with the Collider Detector at
Fermilab. A signal of 25.3f§:i candidates is observed whose probability of arising from a background

0

fluctuation is 3.6 x 1072, corresponding to 6.8 Gaussian standard deviations. The Z) mass is
measured to be 5787.8 & 5.0(stat) + 1.3(syst) MeV/c?>. In addition, the =, baryon is observed
through the process Z,” — B0, where 20 52 7", 2~ 5 Anr ,and A > pr.

PACS numbers: 13.30.Eg, 13.60.Rj, 14.20.Mr
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The quark model has had great success in describing
the spectroscopy of hadrons. For the ¢ and b mesons, all
of the ground states have been observed [1]. The spec-
troscopy of ¢ baryons also agrees well with the quark
model, and a rich spectrum of baryons containing b
quarks is predicted [2]. Until recently, direct observa-
tion of b baryons has been limited to a single state, the AJ
(quark content |udb)) [1]. The accumulation of large data
sets from the Tevatron has improved this situation and
made possible the observation of the =, (|dsb)) [3, 4], the
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2 states (Juub), |ddb)) [5], and the €, (|ssb))[6, 7).

In this paper, we report the observation of an addi-
tional heavy baryon and the measurement of its mass.
The decay properties of this state are consistent with the
weak decay of a b baryon. We interpret the result as the
observation of the Z baryon (Jusb)). This measurement
is made in pp collisions at a center of mass energy of 1.96
TeV using the Collider Detector at Fermilab (CDF II), by
fully reconstructing the decay chain =) — =F 7=, where
EF - = — A7n~, and A — pm~. Charge
conjugate modes are included implicitly. In addition, we
observe the Z;” through the similar decay chain =, —
07, where 20 - == 7", 2= - Ar ,and A — p7—.
These studies use a data sample corresponding to an in-
tegrated luminosity of 4.2 fb~' and constitute the first
exclusive reconstruction of the =) and the first for the
Z, in this decay channel.

The CDF II detector has been described in detail else-
where [8]. This analysis relies upon the tracking system
that operates inside a 1.4 T solenoidal magnetic field. A
five-layer silicon detector (SVX II) measures track po-
sitions at radii of 2.5 to 10.6 cm to provide high pre-
cision impact parameter measurements. Each of these
layers provides a transverse measurement and a stereo
measurement of 90° (three layers) or £1.2° (two layers)
with respect to the beam direction. An open-cell drift
chamber (COT) covers the radial region from 43 cm to
132 cm and provides track momentum meaurement.

Data acquisition is triggered by a system designed to
collect particle candidates that decay with lifetimes char-
acteristic of heavy flavor hadrons. The first level of the
trigger system requires two tracks in the COT with trans-
verse momentum pp > 2.0 GeV/c. In the second level of
the trigger, the silicon vertex trigger [9] is used to asso-
ciate SVX II data with the tracks found in in the COT
and provides precise impact parameter resolution (typ-
ically 40 pm) for these tracks. The silicon vertex trig-
ger requires two tracks with impact parameters in the
range 0.1-1.0 mm with respect to the beam and a point
of intersection that is measured with at least a 200 pym
displacement transverse to the beam.

This analysis combines the trajectories of charged par-
ticles to infer the presence of several different hadrons
in the decay chains. The decay point for each weak
decay process is reconstructed and used to identify the
corresponding hadron. Consequently, it is useful to de-
fine two quantities in the transverse view that are used
to relate the paths of weakly decaying objects to their
points of origin. Both quantities make use of the point
of closest approach 7. of the particle trajectory to a
point of origin 7, and of the measured particle decay
position 7y. The first quantity used here is transverse
flight distance f(h) of hadron h. For neutral parti-
cles, f(h) = (¥4 — 7,) - pr(h)/|pr(h)|, where pr(h) is
the transverse momentum of the hadron candidate. For
charged particles, the flight distance is calculated as the

ntat, E°

arc length in the transverse view from 7, to 7. Flight
distance is used to calculate the proper decay time of
weakly decaying states, where the decay time is given
by t = f(h)M(h)/(c|pr(h)|), where M (h) is the recon-
structed mass. A complementary quantity used in this
analysis is transverse impact distance d(h) which is given
by d(h) = |7, — 7ol

The reconstruction of A candidates uses all tracks with
pr > 0.4 GeV/c found in the COT. Pairs of oppositely
charged tracks are combined to identify these neutral de-
cay candidates, and silicon detector information is not
used due to the large transverse displacement of the A
decay. Candidate selection is based upon the mass calcu-
lated for each track pair, which has a resolution of 1.5-2.0
MeV/c? and is required to fall within 9 MeV/c? of the
nominal A mass [1] after the appropriate mass assignment
for each track. The proton (pion) mass is assigned to the
track with the higher (lower) momentum. This mass as-
signment is always correct for the A candidates used in
this analysis because of the kinematics of A decay and
the lower limit in the transverse momentum acceptance
of the tracking system. Background to the A (¢ = 7.9
cm) [1] is reduced by requiring the transverse flight dis-
tance of the A from the beam position to be greater than
1.0 c¢m, which corresponds to typically 0.6 o¢, where o
is the flight distance resolution.

For events that contain a A candidate, the remaining
tracks reconstructed in the COT, again without addi-
tional silicon information, are assigned the pion mass,
and A 7~ combinations are identified that are consistent
with the decay process =~ — A7~ . Several features of
the track topology are used to reduce the background to
this process. In order to obtain the best possible mass
resolution for =~ candidates, the reconstruction requires
a convergent fit of the three tracks that simultaneously
constrains the A decay products to the A mass and the
A trajectory to intersect with the helix of the 7~ origi-
nating from the =~ candidate. The A 7~ mass obtained
from this fit has a resolution comparable to the A and is
required to fall within 9 MeV/c? of the nominal =~ mass
[1]. In addition, the flight distance of the A candidate
with respect to the reconstructed decay point of the =~
candidate is required to exceed 1.0 cm. Similarly, due to
the long lifetime of the weakly decaying =~ (¢7 = 4.9 cm)
[1], a transverse flight distance of at least 1.0 cm (which
typically corresponds to 1.0 o¢) with respect to the beam
position is required.

In some instances, the intersection of the 7~ helix with
the A trajectory produces a situation where two A7~
vertices satisfy the constrained fit and displacement re-
quirements. In addition, the complexity of the =~ and
A decays allows for occasional combinations where the
proper identity of the three tracks is ambiguous. A sin-
gle, preferred candidate is chosen by retaining only the
fit combination with the highest probability of satisfying
the constrained fit.



The kinematics of hyperon decay and the lower pr
limit of 0.4 GeV/c on the decay daughter tracks force
the majority of =~ candidates to have pr > 1.5 GeV/c.
This fact, along with the long lifetime of the =7, results
in a significant fraction of the hyperon candidates having
decay points located several centimeters radially outward
from the beam position. Therefore, we are able to refine
the =~ reconstruction by making use of the improved
determination of the trajectory that can be obtained by
tracking the =~ in the silicon detector. The =~ can-
didates have an additional fit performed with the three
tracks that simultaneously constrains both the A and =~
masses of the appropriate track combinations and pro-
vides the best possible estimate of the hyperon momen-
tum and decay position. The result of this fit is used to
define a helix that serves as the seed for an algorithm that
associates silicon detector hits with the =~ track. Candi-
dates with track measurements in at least one layer of the
silicon detector have excellent impact distance resolution
(typically 60 pm).

The samples of Z¥ and =} candidates used in this
analysis are obtained by combining the =~ candidates
that have SVX II information with additional 7 candi-
dates. The 7T candidates are tracks that have been re-
constructed with data from at least three SVX II layers.
The 7t used for the ZY reconstruction is required to be
consistent with the trigger requirements. The =F candi-
dates are required to have at least one 7+ track consistent
with the trigger requirements. All =~ 7 (7 ") combina-
tions are required to satisfy a constrained fit for the three
vertices in the decay chain that includes mass constraints
on the A and =~ candidates. The mass distributions
of the combinations that also satisfy ¢t > 100 pm and
pr > 4.0 GeV/c requirements are shown in Fig. 1. Can-
didates with a reconstructed mass within 30(25) MeV /c?
of the nomimal Z%(=}) mass are used for b baryon re-
construction.

The =7 candidates are reconstructed by combining

the Eéo’ﬂ candidates with 7~ candidates that satisfy the
trigger requirements. The =, candidates are required to
have pr > 6.0 GeV/c, restricting the sample to can-
didates that are within the kinematic range where our
acceptance is well modeled [7]. All E. 7~ combinations
are required to satisfy a constrained fit for the four ver-
tices in the decay chain that includes mass constraints
on the A, 27, and =, candidates. Combinations that are
inconsistent with having originated from the collision are
rejected by imposing an upper limit on the impact dis-
tance dpy of the =, candidate measured with respect to
the primary vertex. In addition, the full reconstruction
of the = decay chain provides an opportunity to impose
a requirement on the decay time of the =, candidate since
both its point of creation and decay are reconstructed.

The mean life of the charm baryons varies over a wide
range and is large compared to the typical decay time

resolution of 20 - 60 um/c that we measure. Therefore,
we have chosen a selection on the =, decay time that uses
the decay time resolution o calculated for each candidate
and the mean life of the decaying state. The selection is
developed by using AY as a reference signal. A sample of
AY — AF m~ candidates [10] is used to optimize selection
criteria for AT decay time based on the mean life of the
A} and its decay time resolution. As a result of this
study, we require that the measured decay time of the
Z. candidate falls within the range —20y < t < 37 +
20 where 7 is the mean life of the Z2(ct = 33 um) and
Ef(cr = 132 ym) candidates. This requirement is found
to be approximately 95% efficient on our A} (er = 60 ym)
sample and to reduce the background substantially.

The Z0 7~ and =F 7~ mass distributions with dpy <
100 gm and ¢t > 100um are shown in Fig. 2.
These distributions show clear evidence of an excess
near a mass of 58 GeV/c? with a width consis-
tent with our expected mass measurement resolution.
The mass, yield, and significance of the Eé—,o) sig-
nals are obtained by performing an unbinned likeli-
hood fit on the mass distribution of candidates. The
likelihood function that is maximized has the form
L =TI (fsG(mi,mo, smot™) + (1 — fo)(ao + aimy)) ,
where N is the number of candidates in the sample,
G(mj, mo, smol™) is a Gaussian distribution with average
mg and characteristic width s,,0" to describe the signal,
my; is the mass obtained for a single E,(;O”L)w_ candidate,
o is the calculated uncertainty on m;, and the a,, terms
model the background. The quantities obtained from the
fitting procedure include the fraction fs of the candidates
identified as signal, the best average mass value mg, a
scale factor on the mass resolution s,, to allow for inac-
curacy of the resolution estimate, and the values of ag
and a.

For this data sample, several variations of the fit were
used to test the significance. The first of these fits corre-
sponds to the null signal hypothesis, and fixes f; = 0.0,
sm = 1.0, and mg to the nominal mass of the Z;". Addi-
tional applications allow f, to float, retain the constraints
on 8y, and fix mg to values within 5 MeV/c? of the nom-
inal mass of the =, . The value of —2In L for the null
hypothesis exceeds the values for the fits with variable
fs by at least 48.2 units for the &, candidate sample
and by 48.3 units for the Eg candidate sample. We inter-
pret these as equivalent to a x2? with one degree of free-
dom whose probability of occurrence is 3.9 x 1072 and
3.6 x 1072, corresponding to a significance that exceeds
6.80 for both the =" and ZY. We therefore interpret these
results as observations of the processes 2, — ZY 7~ and
20— Efr.

Masses are obtained from the unbinned likelihood fit
with the mass and resolution parameters allowed to vary.
In addition, the mass fit was used on the 2~ 71 and

E- 7t 7T to obtain mass measurements for the ZY and



=1+, which are seen to be consistent with the nominal
values [1]. The results of these fits are listed in Table 1.

The accuracy of our mass measurement scale is estab-
lished by our measurements of the J/v, ¥(2S5), and T
masses. These calibration points imply an accuracy of
0.5 MeV/c? on the mass measurements of the =, and
=Y. Our fitting technique finds that our estimate of the
mass resolution on each candidate is low, as listed in Ta-
ble I. Fits where this scale factor was fixed at 1.0 or
1.4 introduced shifts in our Eg mass result by as much
as 1.0 MeV/c?. A fit with a fixed 20 MeV/c? Gaussian
width, as implied by the simulation, introduced a shift
of only 0.2 MeV/c?. These effects are added in quadra-

ture with the larger of the asymmetric nominal E&O’“
mass uncertainties [1] to yield systematic uncertainties
of 1.4 MeV/c? for the E; and 1.3 MeV/c? for the =)
mass measurements.

The momentum scale uncertainty is common to all of
our mass measurements, and can be dropped as a system-
atic uncertainty of a measurement of the mass difference
between the Z;” and =Y. Our best E, mass measurement
of 5790.9 + 2.6(stat) + 0.8(syst) MeV/c? [7] is obtained
from the J/¢ =~ final state and has a systematic un-
certainty that would be reduced to 0.6 MeV/c? without
this effect. Therefore, we measure the mass difference
M(Z,) — M(E])) = 3.1 &+ 5.6(stat) £ 1.3(syst) MeV/c?,
where the statistical and systematic uncertainties of the
individual measurements have been added in quadrature.

In conclusion, we have analyzed data collected with
the CDF II detector at the Tevatron to observe the bot-
tom, strange baryon Z). The reconstruction technique
is used on the 5, as well, and the observation of this
state provides a cross check for the analysis. A signal of
25.372-6 =0 candidates, with a significance greater than

60, is seen in the decay channel =) — = 7~ where ZF —
= atat, 2 - An~, and A — pn~. The mass of this
baryon is measured to be 5787.8 & 5.0(stat) 4= 1.3(syst)
MeV/c?, which is consistent with theoretical expecta-
tions [2]. In addition, we observe 25.87%5 candidates
in the process 2, — EX7~ where 22 — =~ nt. The
mass measured for the 2, is 5796.7+5.1(stat) 4 1.4(syst)
MeV /c?, which is consistent with our earlier result [7] but
does not improve upon it. Neither of these decay chan-
nels has been reported previously, and the reconstruction
of the =P is the first observation of this baryon in any
channel.
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TABLE I: Fit results obtained for ¢ and b baryons.

Yield Mass (MeV/c?) Resolution Scale
20 2110+ 70 2470.4 +0.3 1.16 £ 0.04
EF 3048+ 67 2467.3 4+ 0.2 1.24 +0.03
=, 258735  5796.7+£5.1 1.34+0.2
=9 25.3%3%  5787.8+5.0 12402

Candidates per 5 MeV/c?

|
2.50

M(E Tt (1))

FIG. 1: (a) The E~ 7" and (b) the 2~ 7t 7T mass distribu-
tions. The mass ranges used for the 22 and =} samples are

indicated by the shaded areas.
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FIG. 2: (a) The 227~ and (b) the ZF 7~ mass distributions.
A projection of the likelihood fit is overlaid as a dashed line.



